

Threat Modeling at Scale

Authors: Ashwini Siddhi and Matthew Coles, Dell Technologies

Industry Contributor: Altaz Valani

Academic Contributor: Zhenpeng Shi, Boston University

Expert Reviewer: Steve Lipner, SAFECode

Threat Modeling at Scale

 2

Table of Contents
OBJECTIVE .. 3

IMPORTANT DEFINITIONS/TERMS USED IN THIS PAPER ... 3

THREAT MODELING OVERVIEW ... 5

DEFINING THREAT MODELING “AT SCALE” .. 7

Requirements to Achieve Threat Modeling at Scale ... 7

FRAMEWORK FOR EVALUATION OF SOLUTIONS ... 19

EVALUATION OF DIFFERENT SOLUTIONS ... 21

Classes of Tools .. 21

ROLLING OUT THREAT MODELING AT SCALE .. 25

Form a Core Team of Stakeholders .. 26
Understand Business Stakeholder Needs and Expectations and History With Threat Modeling 26
Create a “Shortlist” of Methodologies, Refine the List to Suit Needs .. 27
Identify a Path to Automation .. 27
Create Supporting Collateral ... 27
Deployment “Day 0” to “Day 1” .. 27
Deployment “Day 2” ... 28
Manage, Monitor, Report ... 28
Training & Communications .. 28

SUMMARY .. 29

REFERENCES .. 29

IN CLOSING ... 29

ABOUT SAFECODE .. 30

APPENDIX A .. 31

Detailed Steps for Threat Modeling ... 31

APPENDIX B .. 33

Requirements to Priority Mapping ... 33
Requirements to Persona Mapping ... 34

APPENDIX C .. 35

Threat Modeling Tool Assessments .. 35

Threat Modeling at Scale

 3

Objective
The white paper is intended for developers, architects, security organizations and other personnel who

have dealt with basic threat modeling and wish to upgrade existing threat modeling processes to address

the "scale" factor.

This paper aims to provide the reader with:

• Requirements and challenges that arise due to the scale factor;

• A framework for evaluating different solutions (including a comparison of classes of tools) to meet

these requirements;

• Processes for rolling out and adopting threat modeling at scale.

Important Definitions/Terms Used in This Paper

Term Meaning

Model An abstraction describing a system, system-of-systems, a component, a

network, or a process

Threat An action that could be taken against a system to cause a (usually)

negative effect

* NIST 800-160 uses this definition for threat:

An event or condition that has the potential for causing asset loss and the

undesirable consequences or impact from such loss.

Risk A value expressing the probability of a threat being acted upon and the

cost of impact from a successful threat action

Vulnerability An exploitable weakness

Weakness A fault, gap, exposure or defect

Exploit A process, method, or function for using a vulnerability against a system;

exploits may be manually performed or automated by tools

Threat Actor An individual who would attempt to impact a system using a threat

Complexity A measure of intricateness or lack of simplicity.

Complexity is multi-dimensional, and can take many forms, such as:

● Systems - number and structure of objects and their interactions

Threat Modeling at Scale

 4

Term Meaning

● Organizational - number of people, organizational structure , and

processes

● Technological - disparate technological stacks.

● Operational - value streams at an Org level

“At Scale” Factors that increase complexity, vagueness, and turn-around times for

threat modeling represent “At Scale” elements.

Factors that contribute to “At Scale” include (but are not limited to):

• A system with many moving parts, interfaces, functions.

• A distributed group of stakeholders (e.g. different developers

working on a system).

• Frequent updates/releases for the system, requiring regular

updates to the threat model.

• An organization with many teams or individuals working on various

system components or processes (like compliance, privacy,

security etc.)

• A rapidly evolving threat landscape.

Based on these factors, “at scale” requires the ability to:

• perform component level and as well as system level threat

modeling;

• update existing threat models faster, to keep pace with the

evolution of the system;

• achieve real-time collaboration with multiple stakeholders across

geographical locations.

Threat Library A guide used by practitioners during a threat modeling exercise to identify

threats based on design patterns or other criteria. Threat libraries may be

static or dynamic.

Note: Not all threat modeling methodologies rely on threat libraries.

Severity & Priority Severity is an objective parameter/metric that depicts the impact of a

security bug on a given system.

Priority is a subjective parameter/metric that indicates how soon or in what

order a particular security defect should be fixed.

Threat Modeling at Scale

 5

Threat Modeling Overview
According to the Threat Modeling Manifesto, Threat Modeling is an activity “for analyzing representations

of a system to highlight concerns about security and privacy and if applicable, safety characteristics”.

Threat modeling is a crucial activity of the secure development lifecycle (SDL) for identifying and

mitigating weaknesses and potential security vulnerabilities. Threat modeling is most effective when

performed as part of a Design Phase.

Threat Modeling in a nutshell is a means for stakeholders to collectively understand a system and its

characteristics, including how those characteristics may contain faults or gaps in defenses which could be

leveraged to negatively impact the system, and to shore up defenses in a way that improves the posture

of the system.

Performing threat modeling can be an informal “thought exercise” or a more formal risk analysis and

management effort; the approach, and the objectives, should be meaningful to the organization

performing the activity.

Tools are often used to facilitate a threat modeling activity (and arguably are a requirement in order to

achieve threat modeling “at scale”), but the use of tools should not detract from the conversation and

collaboration which is the true value of threat modeling.

As systems evolve or become more complex, threat modeling becomes increasingly challenging using

traditional approaches. In this whitepaper, we propose a holistic approach to threat modeling at scale,

which combines traditional threat modeling with modern software engineering practices.

Traditionally, Threat modeling has had 4 core steps:

• Model a system;

• Analyze the model for threats;

• Identify mitigations;

• Validate mitigations are effective.

To address the criterion for Scale, this paper calls out steps to include pre- and post-activity functions as

well.

https://www.threatmodelingmanifesto.org/

Threat Modeling at Scale

 6

Figure 1: Steps for Threat Modeling
Refer to Appendix for more details

There are many recognized approaches to performing threat modeling; which approach is chosen for use

by an organization is dependent on a number of factors, but the approach should support organization-

specific business processes and needs, and result in outcomes that are meaningful for the organization

and its stakeholders including customers.

Threat Modeling should eventually tie back to business objectives of the organization and the output of

Threat Modeling should be used to drive other capabilities like secure coding, security testing, and

security operations.

• Identify the system(s).

• Identify stakeholders for each of the systems.

• Identify the security requirements, controls, other

objectives (e.g. privacy, compliance etc).

Define Requirements

and Scope

PRE-STEP

• Identify the following: system's components,

interactions between components, and properties
of each component.

Model a system &

Identify Attack Surfaces

STEP 1

• Analyze component or interaction properties to

identify gaps, faults.

• Identify severity of concerns and prioritize threats.

Identify Threats &

Vulnerabilities

STEP 2

• Define actions to remediate or mitigate gaps.Identify mitigations

STEP 3

• Prioritize the outcomes of threat modeling during

security testing to ensure threat mitigation is
effective.

Validate mitigations are

effective

STEP 4

• Distribute updates to stakeholders

• Use the results of threat modeling to drive other
value streams.

Iterate & Identify

Relationships

POST-STEPS

Repeat steps,

if system or
requirements

evolve

Threat Modeling at Scale

 7

Defining Threat Modeling “At Scale”
Threat Modeling activity that encompasses multiple systems, across multiple releases and involves

several stakeholders across an organization qualifies as Threat Modeling at Scale. This can also include

other moving parts specific to an organization.

Typical example scenarios for requiring Threat Modeling at Scale include the following. Please note these

are not mutually exclusive. For example, an enclave that addresses regulatory requirements can also

impact architectural complexity.

• Organizational Size – the bigger the organization, the more stakeholders are to be involved in or

kept informed on threat modeling.

Example: Multiple divisions with varied processes, tools and deadlines giving rise to operational

friction to threat modeling an integrated solution.

• Architectural Complexity – complex, hybrid architectures have a greater attack surface which

takes longer to understand and to threat model.

Example: An integrated application with components from multiple cloud providers, different

technological stacks, and network segmentation spanning several geographical locations.

• Regulatory Demand – legal, security, privacy and other compliance requirements that are

continually changing and may impact all or some parts of the system in scope.

Example: Threat Modeling Cloud Technologies for compliance with Payment Card Industry (PCI),

General Data Protection Regulation (GDPR), and International Organization for Standardization

(ISO) for Application and Infrastructure Security standards.

• Frequency of Release – threat modeling has to keep up with the frequency of software

development and configuration releases, avoid being outdated or delaying the time to release or

time to market for a system that is being threat modeled.

Example: High volume of design changes to a system in the Agile-DevOps environment with

frequent, on-going releases (we recognize that some teams may release several times a day

while other teams may have less frequent releases).

Requirements to Achieve Threat Modeling at Scale

Threat modeling impacts multiple roles at various levels of an organization. For the purposes of our

discussion, we will limit it to project level activities (developers, threat modelers, product owners, etc) and

stay away from executive stakeholders (CISOs, CTOs, CIOs, etc).

It is essential that all activities related to threat modeling are performed efficiently and the

countermeasures recommended are translated into clear, atomic requirements that developers can

understand and complete. For example, ambiguous requirements without clear exit criteria will slow down

developers and lead to uncertainty about completion.

To be clear, we are not proposing a specific process methodology (waterfall, agile, etc). Rather, we are

recommending that there be a mechanism through which threat modeling can aid in producing

requirements and a feedback loop that allows the threat model to be updated. This keeps the threat

model as a living artifact which can be queried and updated as new threats emerge and existing ones are

mitigated.

Threat Modeling at Scale

 8

Since threat modeling intersects with many other processes, it becomes necessary to consider how it

should be done as efficiently as possible. That eventually touches on value streams and business value

creation or benefits realization. However, our scope here is to limit the discussion to process efficiency at

the project and program level (where many of the day to day development activities occur). For each step

in the threat modeling process, teams need to consider whether there is waste while conducting the

activity. Ultimately, we believe this involves business stakeholders who should participate in defining the

scope of threat modeling.

Let us take a look at the different personas that deal with Threat Modeling on a day to day basis and

understand their requirements or needs to address the “At-Scale” elements for Threat Modeling.

These requirements are prioritized as per the classification:

• P0 - A core requirement to enable “at-scale”

• P1 - A strong recommendation to improve “at-scale”

• P2 - Good to have specialized capability for targeted users and generally useful in Threat

Modeling.

Note: Please see Appendix B for a simpler mapping of requirements to priorities and personas.

Req 1 Effective Threat Modeling at Speed Priority: P0

Requirement Include Threat Modeling activity in the backlog/plan with appropriate story points

(translate according to the Software Development Lifecycle (SDLC) followed).

Security Acceptance Criteria set for every user story/feature going into the system

for that release.

Reasoning Threat Modeling activity must avoid being time-intensive every release. The solution

or methodology to threat model has to account for agile methodologies and other

rapid development processes. One should be able to replicate existing Threat

Models, apply frequently changing requirements and make necessary changes

every release without compromising on the time-to-release or time-to-market of the

products and applications.

To account for frequent releases, one should not compromise on the effectiveness

of the threat modeling activity either. The solution or methodology used to Threat

Model should account for the security acceptance criteria for every user story going

into the system for that release. Ideally, each security requirement should be

captured as a user story.

Applicable

Personas

Development and Engineering Teams

https://safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

Threat Modeling at Scale

 9

Req 2 Automated Diagramming Priority: P2

Requirement Generate Threat Models from Code or Workloads

Reasoning Most inexperienced threat modelers spend a considerable amount of time and effort

in “beautifying” the threat model. This increases the overall time to complete a

Threat Modeling activity.

Solutions that eliminate this effort, like generating Threat Models from Code, JSON

objects, or by connecting to running workloads should be considered. The principles

of Infrastructure as Code can be used to solve this specific problem.

Applicable

Personas

Development and Engineering Teams

Req 3 Application Lifecycle Management

(ALM) Integration

Priority: P1

Requirement Automated creation of backlog items for Dev teams

Reasoning The engineering team should be able to track the results of a Threat Modeling

activity as a backlog item in an ALM system through end to end automation. For

example, each threat and mitigation or requirement that has been generated during

Threat Modeling should create a defect ticket or user story in the engineering

backlog.

Applicable

Personas

Development and Engineering Teams

Req 4 Refining the scope of SDL Activities Priority: P1

Requirement The results of Threat Modeling should drive static code analysis and/or other

verification activities.

Reasoning To realize the full benefit of a Threat Modeling exercise and drive other SDL

activities efficiently, the results of Threat Modeling should drive static code analysis

and/or other verification activities through one of the following:

• DevOps integration

• Platform Engineering

• Manual inputs.

For example, if during Threat Modeling one realizes that a process is using an

unmanaged programming language and could potentially be vulnerable to buffer

Threat Modeling at Scale

 10

Req 4 Refining the scope of SDL Activities Priority: P1

overflow attacks, then the automation scripts for testing should be able to

specifically look for these issues in the system with specific secure development

activities like fuzzing. (see SAFECode material in the footnotes on Secure Software

Development practices).

Applicable

Personas

Development and Engineering Teams

Req 5 DevSecOps Integration Priority: P1

Requirement Threat Modeling should be included in the CI/CD pipeline

Reasoning It is well known that CI/CD pipeline begins from the code and traditionally threat

modeling has been out of scope for this activity.

However, efforts should be made to integrate Threat Modeling into the DevOps

pipeline for it to be a true DevSecOps operation.

All of the above mentioned requirements work well with DevSecOps integration.

Note that most diagramming tools require human involvement to generate the

diagrams but the analysis, reporting and additional actions, if any, can be integrated

with the CI/CD pipeline.

There are also tools that are able to generate diagrams based on code and they can

be used to completely integrate Threat Modeling into the CI/CD pipeline.

Applicable

Personas

Development and Engineering Teams

Security Management

Req 6 Standards for Security Architecture Priority: P2

Requirement Provide templates for classes of design.

Reasoning It is desirable for the solution or methodology to go a step further and support

templates that provide a standardized architecture for each class of design

objectives. Example: Payment gateways, E-commerce platforms, Single Sign-On

(SSO) etc. With this add-on, Threat Modeling activity will be driving consistent

security architecture as a standard across all products and applications in the

organization/Business Unit and reduce the time and effort that would be required to

create a new design for every solution. This will be especially useful for Cloud

Threat Modeling at Scale

 11

Req 6 Standards for Security Architecture Priority: P2

Technologies, Critical Infrastructure, IoT Systems, Embedded Systems or systems-

of-systems.

Applicable

Personas

Architects Modeling Complex Solutions

Req 7 Integration of Multiple Models Priority: P0

Requirement Capability to integrate several models and form a new model.

Reasoning Individual threat models of a complex solution may perform well at the

system/component level but when they are integrated, they may introduce potentially

new threats. Identification of these threats is at most times missed due to absence of

DFDs of the bigger picture and solution objective.

To counter this challenge in complex solutions, the threat modeling solution should

provide capability to integrate several models and form a new model, highlighting the

threats formed during the interconnection of these individual components. This can

be applicable to IoT Systems, Embedded Systems or systems-of-systems.

Note: Integration of models can mean systems to other systems or sub-components

of a system.

Microsoft Threat Modeling tool has the capability to have multiple tabs of diagrams

within a given threat model but does not allow cross-correlation of diagrams and

threats. As a work-around, the first tab can be used to represent the integration and

the subsequent tabs can be used for individual systems/components.

Commercial and other open source tools have the capability to integrate models of

systems or subsystems within a single tab of a given threat model.

Applicable

Personas

Architects Modeling Complex Solutions

Req 8 Chaining of Threats Priority: P2

Requirement Provide attack chain with associated severity

Reasoning Following the adoption of vulnerability chaining patterns by vulnerability researchers,

the ability to link one threat with another weakness/threat in the same system or with

another system in an integrated solution, provides chaining of threats. This attack

chain/attack tree/kill chain along with its associated severity is a valuable input to

developing mitigations to address the complete chain instead of building individual

fixes with potential blind spots.

Threat Modeling at Scale

 12

Req 8 Chaining of Threats Priority: P2

For example, consider a Server Side Request Forgery (SSRF) in a web front end

server, and a database access control issue in the DB layer. These threats might

together form a chain that is valuable to be aware of in addition to the individual

threats.

Applicable

Personas

Architects Modeling Complex Solutions

Req 9 Threat Modeling Beyond Security Priority: P1

Requirement A holistic approach to threat modeling encompassing security, privacy and

regulatory requirements.

Reasoning Currently, most organizations perform security, compliance and privacy activities

separately and often they have overlapping requirements or controls. There is an

opportunity to combine these activities together and identify and address issues at

design time to enable ‘’start left’ instead of just ‘shift-security-left’.

This will help ensure that architects and developers are not duplicating efforts and

increase the value of the output of threat modeling.

Applicable

Personas

Architects Modeling Complex Solutions

Development and Engineering Teams

Req 10 Change Management/Change

Records

Priority: P1

Requirement An effective way to track the evolution of a model over multiple releases

Reasoning Having the ability to review the evolution of the model to see how it changes over

time, and the threats that are identified and mitigated through this evolution, can

help the security engineer (or other team members) understand capability and

maturity of engineering teams and the threat modeling program, predict future

concerns, and help manage risk and security posture effectively.

Applicable

Personas

Security Engineers

Development and Engineering Teams

Threat Modeling at Scale

 13

Req 11 Real Time Collaboration Priority: P0

Requirement An effective way to manage the workflow for Threat Model Exercises

Reasoning Ability to create models and request reviews through automation, instead of

attaching individual documents to emails/tickets etc is essential. Without this

capability, things can quickly go out of control and it can become exceedingly

cumbersome to track changes to the model and also to track who made what

change.

Applicable

Personas

Security Engineers

Development and Engineering Teams

Architects Modeling Complex Solutions

Req 12 Consistent or Complementary

approach to Threat Modeling

Priority: P0

Requirement Develop a common schema for Threat Modeling to achieve consistency

Reasoning Large organizations with engineering teams working on varied technology stacks

use varied tools, processes and methodologies to build their threat models. This ad-

hoc approach presents a challenge to the organization’s security program in terms

of defining what constitutes a good Threat Model and in ensuring the quality of

Threat Modeling activities. To arrest this challenge, a consistent approach to Threat

Modeling activity must be defined.

However, a consistent approach cannot always be practical across a huge

organization. Hence, complementary methodologies for Threat Modeling can be

used, if other factors like common model definitions are supported.

A common schema can help, even if standardization on a single solution is not

available.

Example: If a model is defined using an expressive language like Unified

Modeling Language (UML) or the Open Threat Model schema, or another suitable

system description language, then the source models can be consistently read

and analyzed, potentially by different tools or methodologies. For more

information, see references.

Applicable

Personas

Security Management

Security Engineers

http://www.uml.org/
http://www.uml.org/
https://github.com/iriusrisk/OpenThreatModel

Threat Modeling at Scale

 14

Req 13 Other Valuable and Meaningful

Outcomes

Priority: P2

Requirement Drive towards policy goals that support business objectives

Reasoning Threat Modeling is a unique security verification activity to validate the resiliency of

design and architecture of the system being modeled. The end objective of the

activity is to identify security controls and build a security architecture to achieve

resilience against attacks.

It is important to keep this unique aspect in mind and not view threat modeling as a

mere vulnerability assessment. For example: Instead of focussing on issues such as

common web security concerns (e.g. HTTP Headers or CSP) when reviewing a

model, a wide range of threats including threats to authentication/authorization,

design flow and business objectives should be considered.

The Threat Modeling activity may also be used to drive policy goals, or enforce/steer

towards recognized or approved design patterns, or anything else that makes the

activity "valuable" to an organization.

Applicable

Personas

Security Management

Development and Engineering Teams

Req 14 Cater to Varying Maturity or

Understanding Levels

Priority: P0

Requirement Enable Self Service when appropriate

Reasoning While it is important to define a consistent approach to Threat Modeling across an

organization, one needs to be aware of realities. Not all engineering teams have the

same skill-set and maturity levels. Threat Modeling tools and processes should

cater to varying skill-sets and should also enable Self-Service when appropriate.

Applicable

Personas

Security Management

Req 15 Centralized Solution Priority: P0

Requirement Provide a common platform for stakeholders to create and access latest artifacts

(e.g. stencils, threat libraries etc.)

Reasoning In the era of microservices, a centralized solution might seem archaic but is an

essential ingredient for the success of a Threat Modeling Service/Program across an

organization.

Threat Modeling at Scale

 15

Req 15 Centralized Solution Priority: P0

It is desirable that the solution to Threat Modeling at Scale does not result in stand-

alone artifacts which would require a medium like email or ticketing system to be

shared across stakeholders for reviews or perusal.

Instead, the solution should provide a platform for multiple stakeholders to access the

latest artifacts for their perusal.

This solution should automatically update threat libraries and stencils in real time and

help in the adoption of the latest version without any waiting period.

Note: Monolithic or centralized solutions are not always the answer to scale due

to other factors like cost.

There is also the potential for multiple solutions to co-exist, as long as the inputs and

outputs can reasonably be interchanged or related. That way, perhaps, if one team is

used to using an enterprise class tool for a large complex environment, but another

sub-group is familiar with a basic CLI modeling tool, they could reasonably co-exist

with a little overhead. Though not the ideal scenario, it can be a practical strategy

during difficult economic situations.

Applicable

Personas

Security Management

Req 16 Easy Adoption Priority: P0

Requirement An easy to use and understand solution that results in quick adoption

Reasoning A tool that is complex, and difficult to use and understand will result in delayed

onboarding of Products and Applications and potential inconsistent or infrequent

use.

It is important that the Threat Modeling solution be “sellable” to an organization’s

internal customers. The features of the chosen Threat Modeling solution should be

able to align and enable the business goals/strategy of the organization. For

example: If business is migrating from on-prem to cloud, threat modeling should be

able to adapt to these changes quickly and efficiently.

Applicable

Personas

Security Management

Threat Modeling at Scale

 16

Req 17 Actionable Results Priority: P0

Requirement Generate actionable list of results based on persona

Reasoning A Threat Modeling solution should generate an actionable list of results based on

the persona viewing the results. What a developer wants to see is different from

what a Security Program Owner would like to see in the results.

The tool/solution should have the ability to integrate with reporting dashboards and

defect tracking systems.

Applicable

Personas

Security Management

Dev and Engineering Teams

Security Engineer

Req 18 Customizations Priority: P0

Requirement Encompass organization specific threats and their customization

Reasoning Each organization is different and may have specific threats to its domain that a

generic tool would typically not encompass. A customizable solution to

accommodate new changes in threat landscapes and account for new technologies

specific to an organization is essential. This would also ensure that the solution is

scalable and future-proof.

Applicable

Personas

Security Management

Dev and Engineering Teams

Req 19 Handle Conflicting Requirements Priority: P2

Requirement Encapsulate overlapping and confusing requirements from different pillars like

Security, Privacy, and Compliance.

Reasoning Requirements when bridging different technologies and/or security/privacy/safety

principles can be confusing as well as overwhelming. The chosen threat modeling

solution should be able to internally encapsulate and objectively resolve this

potential conflict. Typically, the end-users should not be left to resolve these

challenges themselves as it could potentially decrease the quality of the threat

modeling activity and increase turnaround times.

Applicable

Personas

GRC and Organizational

Threat Modeling at Scale

 17

Req 20 Cross Functional Threat Library Priority: P0

Requirement An extensive library of Threats with detailed mitigations and external industry

references.

Reasoning A cross functional threat library that brings together data from different personas

(security, legal, compliance, privacy, development, operations) is required. The data

in this threat library is linked together to provide meaningful cross functional insights.

The threat library is regularly updated and impact analysis can be performed when

any change is made. This broadens threat modeling to include data flow analysis,

regulatory changes, system changes, and business strategy changes.

Applicable

Personas

GRC and Organizational

Req 21 Capability and Reasonable Costs Priority: P0

Requirement Capability to on-board multiple systems with varied technology stacks.

Reasoning The threat modeling solution should be capable of on-boarding new products and

applications. If need be, it should also allow for existing threat models to be

completely revamped to accommodate changes in the technology stack of the

system being modeled and encompass the latest threats across these different

technology stacks.

Maintenance costs of the Threat Modeling solution itself must be reasonable

including costs for 3rd party vendors (if any), resource costs, contractual costs, and

infrastructure costs.

Note that a “reasonable” cost is dependent on the organization implementing Threat

Modeling

Applicable

Personas

GRC and Organizational

Security Management

Threat Modeling at Scale

 18

Req 22 Value Stream Support Priority: P2

Requirement Drive aspirational goals of the organization

Reasoning An organization might like to drive other value streams like security testing, and

hiring through the results of threat modeling. There can also be aspirational goals to

translate specific findings from threat modeling to case studies to be published in

security forums etc. Though not a priority item, it is certainly good to have the threat

modeling solution enable driving of other value streams and achieving of

aspirational goals. This could be an attribute of a cutting-edge, differentiator solution

Applicable

Personas

GRC and Organizational

Security Management

Req 23 Training Priority: P0

Requirement Solution has associated training materials or sufficient collateral to build training

material.

Reasoning Learning how to Threat Model effectively takes time and requires practice. It is

important to enable development teams with appropriate training and hands-on

activities to learn the process. Development teams must enable developers and

invest in sufficient cycles/sprints for training. The solution or methodology used for

threat modeling must have appropriate training content that is accessible to all

stakeholders. A solution should be easy to learn and not require specialized skills to

use. A methodology should be accessible to most stakeholders, some of whom will

not have a strong understanding of security or privacy.

Training may increase the cost of the Threat Modeling Solution, especially in the

case of a commercial product.

Applicable

Personas

GRC and Organizational

Security Management

Security Engineer

Architects Modeling Complex Systems

Development and Engineering Teams

Threat Modeling at Scale

 19

Framework for Evaluation of Solutions
Over the years, many solutions for threat modeling have been proposed and developed. The solutions

vary in terms of capabilities and workflow, as they often focus on different aspects of threat modeling. As

a result, it is often difficult to compare threat modeling solutions directly, which makes the selection of

threat modeling solutions a non-trivial problem. A standardized framework for evaluating various threat

modeling solutions would be highly valuable.

Threat modeling solutions include both methodologies and tools. Methodologies are typically

abstractions, such as STRIDE [1], PASTA [2], and LINDDUN [3], of how threat modeling should and be

performed. On the other hand, threat modeling tools provide assistance in the actual implementation of

threat modeling in the SDL, often in the form of software, for example, the Microsoft Threat Modeling Tool

[4] and OWASP pytm [5]. The design of such tools involves the selection of one or multiple

methodologies for threat modeling, as well as other practical aspects, such as integration with other tools

in the SDL, and collaboration between different teams in a large organization.

There have been a few attempts to build frameworks for evaluating threat modeling methodologies or

tools, such as the work in [6] and [7].

Nonetheless, it is debatable whether the criteria proposed in previous work are the most appropriate

ones, and there is still a lack of consensus on a standardized evaluation framework. General criteria for

characterizing solutions provide valuable intuition, but sometimes can be subjective. For example, some

users may consider a solution to be easy to learn and use and, as such, to be highly adoptable. However,

other users may not feel the same way. One option is to use more concrete and objective criteria, such as

the documentation of the solution, and let users decide for themselves based on these objective criteria.

Next, we propose our framework for evaluation of threat modeling solutions. Here, the solutions include

both methodologies and tools. Moreover, we focus on solutions for threat modeling at scale, meaning that

the solutions are suited for large-scale use in complex systems. As a result, the focus of our criteria leans

towards suiting the needs of large organizations.

• Scalability. Products and Applications of large organizations run into more than thousands. The

solution should have the capability to onboard these multiple complex systems and the systems’

stakeholders as users as and when needed into the tool.

Also, as the number of components in a system grows, the complexity of the threat modeling

process increases exponentially, making it difficult to keep up with the pace of development. The

tool should account for the need for multiple models for a single system based on different

releases to address this.

• Accessibility (for Collaboration). Threat modeling at scale typically requires collaboration

between multiple teams, and involves multiple stakeholders. The tool should support coordination

between teams and help them reach consensus on threats without having to share multiple

artifacts across multiple media/channels.

• Adoptability. The solution needs to be easy to learn and use in order to be adopted in large

organizations.

o Is the solution mature and ready to use in practice?

o Has it been implemented in an organization successfully?

o Does the solution provide adequate training and documentation?

● Viability (Cost). The cost of a solution may increase significantly when used on a large scale.

Threat Modeling at Scale

 20

○ Is the solution free to use (e.g., open source tools)?

○ If not, what is the pricing model of the solution?

○ How does the price change with the scale of the system?

○ What are the additional costs of the solution (e.g., costs of human resource and

maintenance)?

● Automation. It is not practical to perform threat modeling at scale entirely manually. A viable

solution needs to support at least some level of automation for efficient threat modeling. Having

automated solutions is a key in the transition from DevOps to DevSecOps.

○ To what extent can threat modeling be automated - fully or partially?

○ How does the tool fit into the DevOps / DevSecOps toolchain?

○ Can the threat modeling solution/methodology be integrated with multiple tools across the

software development lifecycle for agile methodologies?

● Applicability. Threat modeling includes multiple steps.

○ Different systems often have different perspectives of threats, which results in varying

requirements. Does a solution work for a specific kind of systems (e.g., cyber-physical

systems), or for general systems? Does the solution work for hardware, software and

firmware systems?

○ Can the solution be customized to suit the needs of a specific system?

● Maturity (of Threat Library).

○ Which kind of threats (e.g., security, privacy, or safety) does the solution aim to identify

and mitigate?

○ Can additional threats be added to the threat modeling solution?

○ Are detailed, low level threats reported?

● Reusability. Ability to create templates to

○ Drive architectural standards across the organization.

○ Create a baseline system design for conceptualization and use it across multiple releases

as it evolves.

● Extensibility. The solution should be Adaptive and Current i.e. adapt to new technology stacks

and the latest threats in an automated fashion, without requiring manual effort.

● Methodology. Though the internals of a threat modeling solution cannot be determined, it is

good to understand what methodology the solution uses - is it attacker based, defender based or

a combination of both? For holistic results it is always recommended to go with a model that

combines both perspectives.

● Actionability of Results. The results of threat modeling should be consistent across multiple

runs and provide appropriate mitigations for all of the issues reported. Rather than presenting

lengthy reports, results should be concise and actionable for developers and architects to

implement as part of their backlogs. The number of false positives reported should be negligible.

Threat Modeling at Scale

 21

Evaluation of Different Solutions

Classes of Tools

For the purpose of this paper, we will only look at the first three classes. The other innovative tools have

been called out for informational purposes only. Though under the same classification, each of these

tools in this category can be different and they cannot be compared through the same lens.

Commercial Tools Diagramming Tools Text Based Tools

Maturity of Library

Threat Libraries for Software and

Cloud that are kept current, with a

well defined update cadence.

These tools tend to support certain

technologies better than others (e.g.

web or cloud systems over

hardware and firmware).

Customization of libraries is also an

option.

Threat Libraries are usually generic

but often extensible.

The updates to the threat library

have no regular cadence and can

be ad-hoc.

Most of these tools are open source;

updates are irregular and based on

the community for maintenance.

As open source tools, users can

make modifications to add their own

threats as they require them.

Threat Libraries are usually generic

in nature, but often extensible.

The updates to the threat library

have no regular cadence and can

be ad-hoc.

Most of these tools are open source;

updates are irregular and based on

the community for maintenance.

As open source tools, users can

make modifications to add their own

threats as they require them.

Commercial Tools

IruisRisk

Threat Modeler

Diagramming Tools

OWASP Threat Dragon

Microsoft Threat Modeling Tool (MTM)

Threat Manager Studio

Other Innovative Tools

CAIRIS

Avocado Reveal

Threatspec (Code based)

Securicad

Threat Modeling as

Code/Text Based Tools

OWASP pytm

Threagile

Threat Modeling at Scale

 22

Commercial Tools Diagramming Tools Text Based Tools

Scalability

Supports multiple systems and

users

These tools generally support

the development of a single

threat model (which may contain

one or more diagrams) but do

not provide the required aspects

of scalability to manage models

and diagrams across projects

without extra effort.

Tools in this category are

implemented through build

processes (e.g. as scripts that

are executed, or code

annotations that are processed).

Scalability of model changes or

threat information updates

comes from those processes

e.g. ability to manage multiple

programs, models, and/or user

accesses, not the modeling tool

explicitly.

Accessibility for Collaboration

A centralized tool can be used

for collaboration and there is no

need to share artifacts over

different mediums.

The Microsoft Threat Modeling

tool creates stand-alone artifacts

(individual files containing one

model/one or more diagrams per

file). Sharing of these files

usually requires them being

emailed to stakeholders or held

in a file repository or share;

modification of these files tend to

be single-user edit.

OWASP Threat Dragon provides

the ability to tag Reviewers and

Contributors, and supports a

web-based version tied to github

for sharing

Threat models are created in/as

source code that can be

managed with collaboration tools

such as git, gitlab, etc.

Threat Modeling at Scale

 23

Commercial Tools Diagramming Tools Text Based Tools

Adoptability

These solutions come with in-

built training and professional

services at an additional cost.

Though there are no

professional services, these

tools are intuitive and easy to

use.

They also have brief

documentation on their websites

(MTM and Threat Dragon) that

demonstrates how to get started

with these tools.

Though there are no

professional services, these

tools are intuitive and easy to

use.

Some of these tools have decent

documentation available

alongside the tool or source

code. However, the update

cadence of these documents

and support is not yet very well

defined.

Viability (Cost)

These tools can be cost-

prohibitive in large organizations

due to their licensing

models/subscription fees.

An unlimited licensing

model/subscription with a price

cap can be a good work around

in such scenarios.

These are mostly open source

and require no cost to purchase

or maintain except perhaps time

and effort to add threats and

make the tool available to all

stakeholders.

These are mostly open source

and require no cost to purchase

or maintain except perhaps time

and effort to add threats and

make the tool available to all

stakeholders.

Automation

These tools are built to support

complete integration with the

development lifecycle.

Some of these tools also provide

the option to Threat Model as

Code.

The focus of these tools are

purely threat modeling and they

do not support integration into

development pipelines, but

automate the threat

generation/identification

process.

These tools are automated, and

represent the activity as “Threat

Modeling as Code”; they

automate the process of threat

identification and model

rendering.

Integration with the development

lifecycle for reporting, analysis

etc. is yet to be developed or in

nascent stages.

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://threatdragon.github.io/home

Threat Modeling at Scale

 24

Commercial Tools Diagramming Tools Text Based Tools

Applicability

Tool/Solution can be customized

for applicability.

In some areas, they also provide

clear segregation between

categories of applicability.

Tools offer generic threats that

can be used cross-domain.

The tools can be customized, if

required.

Tools offer generic threats that

can be used cross-domain.

The tools can be customized, if

required.

Reusability

Ability to create templates for

further re-use is supported

These tools do not support

creation of model templates,

although they do contain

templates (“stencils”) for objects

used in the diagrams.

These tools are written as

source code and can support

creation of model templates.

Extensibility

These tools are updated

automatically by the vendor and

the threats are in alignment with

the industry best practices and

understanding at that point in

time.

Updates need to be manually

installed, and will depend on

deployment options (local

installation or part of a shared

environment).

Updates need to be manually

installed, and will depend on

deployment options (local

installation or part of a build

environment).

Methodology

Not disclosed but based on

demos the Threat Library is

based on both attacker and

defender mechanisms.

Microsoft Threat Modeling Tool

implements STRIDE

OWASP Threat Dragon

implements STRIDE, LINDDUN,

and CIA methodologies

pytm implements a Threat

Library based on STRIDE

categories and CAPEC/CWE,

and which is extensible.

Threagile implements a Threat

Library which is defined by the

developer and partly based on

CWEs. Each threat has a

corresponding CWE.

https://github.com/Threagile/threagile/tree/master/risks/built-in
https://github.com/Threagile/threagile/tree/master/risks/built-in

Threat Modeling at Scale

 25

Commercial Tools Diagramming Tools Text Based Tools

Actionability of Results

Results are provided with

recommended mitigations in an

approachable manner for

developers and architects to

take action.

False positives are kept to a

minimum.

Threat descriptions can be hard

to understand for non-security

users, and may only provide

general mitigation information as

these tools usually lack specific

context for the system being

modeled.

These tools can generate higher

false positive rates due to lack or

incorrectness of provided

information. Some tools, like the

Microsoft Threat Modeling tool,

offer the ability to customize the

threat descriptions to provide

better guidance and easier to

understand information.

Threat descriptions can be hard

to understand for non-security

users, and may only provide

general mitigation information as

these tools usually lack specific

context for the system being

modeled.

These tools can generate higher

false positive rates due to lack or

incorrectness of provided

information. These tools offer

the ability to customize the

threat descriptions to provide

better guidance and easier to

understand information.

See Appendix C for more detailed tool-specific information.

Rolling Out Threat Modeling at Scale
Organizations should establish a standardized threat modeling process to ensure consistency and

scalability. The process should align to the steps called out in Figure 1. Ensure that clear roles and

responsibilities are assigned to individual team members to ensure that the process is effective, followed

and tracked.

It is recommended to implement this process through a specific threat modeling program for the

organization.

The Action Checklist for managing a roll out of a Threat Modeling program at Scale:

● Form a “Core Team” of stakeholders approved by the leadership

● Understand business stakeholder history with threat modeling, specific needs, and expectations

● Identify suitable methodologies for creating models and performing analysis

● Identify opportunities for automation

● Define a Reference Design for Threat Modeling, including automation capabilities

● Create and document threat modeling processes and supporting collateral.

● Integrate existing / deploy new capabilities (Day 1)

● Onboard initial stakeholder teams

Threat Modeling at Scale

 26

● Collect telemetry, metrics, and feedback

● Identify and plan opportunities for improvement based on data (Day 2..n)

● Identify additional teams for onboarding

● Manage, Monitor, Report

● Continuous Training & Communications

Creating a threat modeling program and applying it “at scale” needs to be planned and carefully managed

to support the needs of the organization and the systems it creates. While the actions and specific details

necessary to create and roll out any program within an organization are going to be by necessity

organization-specific, there are common themes [10] that can be leveraged. In addition to the common

approaches, here are some considerations for delivering threat modeling to the business that support

performing this activity “at scale”.

Form a Core Team of Stakeholders

Core team membership should include representation from security, privacy, and operations teams,

engineering and development community members, and select members of business leadership. Good

representation, with the visibility and sense of ownership and involvement that comes with representation,

can make or break program success.

What is a good size for the Core Team?

Core teams can range in size from a handful of individuals to dozens of people; the exact size will depend

on your organizational structure and needs. A core team larger than 20 people may be too cumbersome

to manage and meet all the varied requirements and expectations that individual stakeholders may bring

to the table. Consider limiting membership to key personnel who can act as delegates for a broader set of

constituents. A general rule of thumb 7+/-2 is considered an “ideal” team size [11].

Is the Core Team a “democratic” body?

It need not be democratic (e.g. members with voting rights, majority votes to pass), but members should

feel that they have a stake in the decision making process and an opportunity to elevate concerns so they

can be addressed appropriately. Having a couple of members who lead the team and who moderate

discussions, elicit feedback, draft proposals, and gain consensus (which may not be unanimous) among

members, can be beneficial.

Understand Business Stakeholder Needs and Expectations

and History With Threat Modeling

Knowing what the business users expect from threat modeling (implicitly or explicitly) will help create a

program that can scale. If an existing non-scalable program or solution (or frequently very ad-hoc

approaches) is already in place, understanding the delta between those solutions and what might be

needed to support something “at scale” will help enable success.

See the Requirements for Threat Modeling at Scale section above for things to consider in this step.

Threat Modeling at Scale

 27

Create a “Shortlist” of Methodologies, Refine the List to Suit

Needs

Use the Framework for Evaluation of Solutions section above to identify the methodologies that might

support the at-scale needs of the organization. Refine the list based on the selection factors and

stakeholder needs and expectations to achieve a targeted list of one or two approaches to launch

Program Day 1.

Identify a Path to Automation

Threat Modeling at Scale works when some automation exists to facilitate or perform “non-value-add”

type of work, such as creating models from descriptions and generating documentation.

Create Supporting Collateral

Once a short list of methodologies has been identified, consider what it will take to implement and deploy

a program based on it. Depending on the methodology(ies), and eventually any tooling that may support

the approach, you will need to create guidance and supporting processes to facilitate adoption,

integration, and use of the mechanism.

● Create a high level process document, highlight roles and responsibilities for individual team

members. Define time cost in hours required for these roles and responsibilities to plan for

capacity accordingly.

● Define a standard to ensure the threat modeling activity is effective. Call out what constitutes a

“good threat model” and set the completion criteria for a threat modeling exercise.

● Define inputs, document guidance to prepare for and use, model types, and workflow/processes.

● Define threat sources and threat rules (if applicable).

● Define outputs/outcomes, document guides to facilitate triage, reporting, and

mitigation/remediation.

● Define operationalization, how to integrate with DevSecOps (if applicable), and release code

snippets and libraries/tools.

Deployment “Day 0” to “Day 1”

Release the solution in the BETA stage after fine-tuning the identified methodology/solution to meet

organizational needs and gathering early stakeholder approval.

In this BETA stage, engage with diverse teams across the organization to gather feedback and

opportunities for improvement.

Make sure to address the critical feedback comments first, then add the rest to your backlog or planning

schedule.

After addressing critical feedback and other backlog items, the solution should be ready for 'Go Live' or to

be 'Generally Available'. Communicate the Generally Available (GA) release well in advance using

various platforms and channels to ensure adoption and engagement.

Threat Modeling at Scale

 28

Deployment “Day 2”

Continue to roll out the solution to different engineering teams either in a phased manner or in a

prioritized order.

After the solution is GA, there may be a lot of curiosity and interest by the targeted end-users. To address

constant questions and queries by the end users and to keep the momentum going, keep the

communication channel open with end users by doing the following:

● Provide email or other direct contact methods for users to reach to submit questions or concerns

● Define an automated channel for receiving feedback

● Engage with end-users in terms of refresher sessions, quizzes etc.

● Provide formal training, helpful guides, and FAQs.

Start working on Continuous Improvements for the solution in parallel during its adoption. Engage with

core team members on a regular cadence (such as weekly) to review the open items on the feedback list,

to plan how to address feedback items, and to take action. Apply and publish these feedback "fixes'' in

smaller increments as part of frequent releases.

If a centralized tool/platform is being used to Threat Model at Scale, ensure that there are different

instances of it. The production instance is used for actual engagement and adoption. The staging/dev

instance is used to try different configurations, apply new ideas, and as a “playground” to innovate.

Manage, Monitor, Report

Define appropriate KPIs and Metrics and measure to determine if success criteria have been met.

Put processes and tools in place to support these measurements and reporting outcomes.

Monitor progress of these metrics over time and adjust as needed.

These numbers can be reported to leadership to show-case the efficiency and the usefulness of the

program.

Threats evolve, and the at-scale program needs to as well. Tweak rules, expand scope etc. to include

evolving technologies etc. (like privacy) and suit organizational strategy.

Training & Communications

Threat modeling is a niche skill and requires specialized expertise. In large organizations, there may be a

limited number of experts with the required skill set, making it difficult to scale up the threat modeling

process.

Set up a training program and use different channels to develop a “threat modeler” community in the

organization.

In large organizations, different teams work on different parts of the system. Coordinating between these

teams can be challenging, and communication gaps can lead to incomplete threat modeling despite

having a well-defined Threat Modeling process. Define and set up a team for communications and

coordination across the organization.

Threat Modeling at Scale

 29

Summary
Business leadership should be on the lookout for ways to improve productivity and effectiveness (and

ROI) of security programs. Implementing a threat modeling program “at scale” can be an effective way to

improve productivity and the security of systems being built or deployed by your organization. Creating

such a program will support collaboration among engineering teams and improve the quality of findings.

References
[1] https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats

[2] https://versprite.com/blog/what-is-pasta-threat-modeling/

[3] https://www.linddun.org/

[4] https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

[5] https://owasp.org/www-project-pytm/

[6] N. Shevchenko, B. R. Frye, and C. Woody, “Threat modeling for cyber-physical system-of-systems:

Methods evaluation,” Carnegie Mellon University Software Engineering Institute Pittsburgh United States,

Tech. Rep., 2018.

[7] Z. Shi, K. Graffi, D. Starobinski, and N. Matyunin, “Threat modeling tools: A taxonomy,” IEEE Security

& Privacy, vol. 20, no. 4, pp. 29-39, July-Aug. 2022.

[8] https://safecode.org/uncategorized/fundamental-practices-secure-software-development/

[9] https://safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

[10] https://www.pmi.org/pmbok-guide-standards/foundational/pmbok

[11] https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

In Closing
The main purpose of this paper is to demystify the practice of threat modeling at scale. The collective

feeling among the authors is that the return on investment from threat modeling justifies the effort

necessary to get it started; from there on, it is just about practice.

We encourage you to start now. We would like to receive your feedback on this paper. We are very

interested in hearing about your experiences doing threat modeling in your industry and environment.

Please send your comments to feedback@safecode.org.

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://versprite.com/blog/what-is-pasta-threat-modeling/
https://www.linddun.org/
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://owasp.org/www-project-pytm/
https://safecode.org/uncategorized/fundamental-practices-secure-software-development/
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://www.pmi.org/pmbok-guide-standards/foundational/pmbok
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
mailto:feedback@safecode.org

Threat Modeling at Scale

 30

About SAFECode
SAFECode is a global industry forum where business leaders and technical experts come together to

exchange insights and ideas on creating, improving, and promoting scalable and effective software

security programs. We believe that secure software development can only be achieved with an

organizational commitment to the execution of a holistic assurance process, and that sharing information

on that process and the practices it encompasses is the most effective way for software providers to help

customers and other stakeholders manage software security risk.

Threat Modeling at Scale

 31

Appendix A

Detailed Steps for Threat Modeling

Step Actions

The Pre-Step should be done prior to beginning a threat modeling initiative, and for each system being

evaluated as it enters the program.

Also, at a program level the below should have already been identified:

● Identify a methodology to follow for the activity

● Identify metrics and/or KPIs to help to determine what success looks like

Pre-Step. Define Requirements

and Scope

● Identify the system(s) for evaluation

● Identify stakeholders for each system

● Identify the security requirements, controls, other objectives

(e.g. privacy, compliance etc).

Regardless of the specific threat modeling methodology or approach chosen in the Pre-Step, the

general flow follows in steps 1 through 4

Step 1: Model a system &

Identify Attack Surfaces

● Identify the system’s components, interactions between

components, trust boundaries, and properties of each

component.

Step 2: Identify Threats &

Vulnerabilities

● Analyze component or interaction properties to identify gaps,

faults, or other exposures, using available sources of threat or

vulnerability patterns.

● Identify severity of concerns and priority of threats

Step 3. Identify mitigations ● Optionally, consult with risk management to determine if effort

to address should be taken (e.g. to fix, mitigate, or accept the

risk)

● Define actions to remediate or mitigate exposures, based on

system security, privacy, or safety engineering principles, and

common architectural patterns.

Step 4: Validate mitigations are

effective

● Prioritize the outcomes of threat modeling and inform lifecycle

activities such as security requirements, functional and

security testing, to ensure threat mitigation is effective

Following each threat modeling activity (new or an iteration), consider performing the Post-Steps below.

Threat Modeling at Scale

 32

Step Actions

Post-Steps: Iterate & Identify

Relationships

● Monitor for new threats and evaluate abuse cases for

systems, accordingly.

● Distribute updates to objectives and stakeholder needs (as

needed)

● Distribute updates to threats (if using a threat library)

● Repeat steps 1 through 4 as and when the system (model) or

requirements (threats) evolve

● Based on organizational goals and aspirational values, use

the results of threat modeling to drive other value streams.

Threat Modeling at Scale

 33

Appendix B

Requirements to Priority Mapping

Requirements Number Requirements Priority

R1 Effective Threat Modeling at Speed P0

R2 Automated Diagramming P2

R3 ALM Integrations P1

R4 Refining the Scope of SDL Activities P1

R5 DevSecOps Integrations P1

R6 Standards for Security Architecture P2

R7 Integrations of Multiple Models P0

R8 Chaining of Threats P2

R9 Threat Modeling Beyond Security P1

R10 Change Management/Change Records P1

R11 Real Time Collaboration P0

R12 Consistent or Complimentary Approach to Threat
Modeling

P0

R13 Other Valuable and Meaningful Outcomes P2

R14 Cater to Varying Maturity Levels P0

R15 Centralized Solution P0

R16 Easy Adoption P0

R17 Actionable Results P0

R18 Customizations P0

R19 Handle Conflicting Requirements P2

R20 Cross Functional Threat Library P0

R21 Capability and Reasonable Costs P0

R22 Value Stream Support P2

R23 Training P0

Threat Modeling at Scale

 34

Requirements to Persona Mapping

Requirements
- Priority

Dev &
Engineering

Architects Security
Engineers

Security
Management

GRC & Org

R1 – P0 Y

R2 – P2 Y

R3 – P1 Y

R4 – P1 Y

R5 – P1 Y Y

R6 – P2 Y

R7 – P0 Y

R8 – P2 Y

R9 – P1 Y Y

R10 – P1 Y Y

R11 – P0 Y Y Y

R12 – P0 Y Y

R13 – P2 Y Y

R14 – P0 Y

R15 – P0 Y

R16 – P0 Y

R17 – P0 Y Y Y

R18 – P0 Y Y

R19 – P2 Y

R20 – P0 Y

R21 – P0 Y Y

R22 – P2 Y Y

R23 – P0 Y Y Y Y Y

Threat Modeling at Scale

 35

Appendix C

Threat Modeling Tool Assessments

This section includes information on a selection of tools that are frequently used for facilitating or

performing threat modeling as an activity during a system’s life cycle. Each tool is measured against the

factors highlighted in the Framework for Evaluation of Solutions section and presented here as a

reference guide for readers. The tools selected for this appendix are based on member usage experience

and do not represent a complete list of possible tools or any specific endorsement of them. A thorough

curated (though not complete) list of threat modeling resources can be found here.

1. Microsoft Threat Modeling Tool (free)

The Microsoft Threat Modeling Tool (MTM) has evolved over several years. For starters, it provides a

default library (here called template). Once the model is built based on the template, the tool identifies

threats by checking threat conditions in the template. Threats in the default template are categorized by

STRIDE. The template can be customized to suit specific use cases. Elements in the diagram, threat

types, and threat properties are all customizable. Threat properties include description, severity, and

countermeasures. Users can also add community-contributed templates or build their own ones from

scratch.

● Scalability. Templates can be created for modeling specific systems (e.g., template for

development with Azure cloud service). However, system modules cannot be reused or imported,

and new models need to be built from scratch. When the system scale is large, it can be difficult

to build the entire system model. No integration with other tools in SDL.

● Accessibility (for Collaboration). No support for collaboration between multiple teams. All files

are saved locally. Only works on Windows.

● Adoptability. The tool was first released in 2014 and regularly maintained since then. The latest

version 7.3.21108.2 was released in November 2022. It is relatively mature and can be

downloaded from the Microsoft website. Documentations on how to use the tool are also

provided.

● Viability (Cost). Free to use. Maintained by Microsoft. However, it might result in additional costs

of human resources to tailor the template for specific use cases.

● Automation. In the templates, conditions under which a threat might exist can be defined for

each system component. The tool can then automatically identify potential threats based on the

conditions. The basic severity (high/medium/low) and mitigations of each threat can also be pre-

defined, regardless of the actual system model. A threat report of the system can be

automatically generated. No other automation is available.

● Applicability. Focus mainly on modeling a system and identifying security threats. A default

template is provided for the general purpose of threat modeling. Customizing the templates can

make the tool work for specific kinds of systems.

● Reusability. Templates can be saved and reused. Models cannot be reused in new models.

● Extensibility. Templates can be customized to adapt to different maturities of the system model.

A template can define general system components (e.g., Generic data store), or more specific

ones (Azure SQL database).

https://github.com/hysnsec/awesome-threat-modelling
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

Threat Modeling at Scale

 36

2. OWASP Threat Dragon (open source)

OWASP Threat Dragon is designed as a relatively light-weight tool. Its threat library (here called threat

rule engine) is not as customizable as the other tools in this section. Like the MTM tool, it provides

support for users to draw DFDs and associate threats to the components in the diagram. Note that it

suggests generic potential threats, while details of the threats are left for users to fill in. Its advantages

include workflow integration with GitHub, and support for more threat categories (LINDDUN and CIA)

besides STRIDE.

● Scalability. System modules cannot be reused or imported, and new models need to be built

from scratch. When the system scale is large, it can be difficult to build the entire system model.

Scripts are provided for integration with Jira.

● Accessibility (for Collaboration). Works as a desktop or web application. A docker image is

also provided.

● Adoptability. Developed since 2015-2016. Version 2.0 was released in Feb 2023, and

maintained since then. Installation and demonstration related artifacts are provided.

● Viability (Cost). Free to use. Maintained by OWASP team.

● Automation. A threat rule engine (similar to templates in Microsoft MTM) can automatically

suggest possible threats, but only generic ones (e.g., generic tampering threat). More information

of the threats needs to be filled in by users. A threat report of the system can be automatically

generated. No other automation is provided.

● Applicability. Designed for general purpose threat modeling on a relatively abstract level. By

default, it focuses on security threats. It can also be used for privacy threat modeling by applying

the LINDDUN threat rule engine.

● Reusability. The threat rule engine provided by the tool can be reused. Models cannot be reused

in new models.

● Extensibility. No customizable part. Nonetheless, the tool can be extended as it is open-

sourced.

3. OWASP pytm (open source)

OWASP pytm describes the system model in Python language. It requires users to create a Python object

for each of the system components based on its pre-defined Python classes. The tool then generates a

system diagram and identifies threats from the text-based model. Its threat library contains

comprehensive information about each potential threat. To mention a few, the “condition” attribute for

threat identification, the “likelihood” and “severity” attributes for simple evaluation, and the “mitigation”

attribute suggesting countermeasures.

● Scalability. System models are saved as Python files, as such, new models can be built on top

of existing ones. Models of large-scale systems can be saved in multiple files for better

modularity. No official integration with other tools in SDL, but could be easily used with other tools

(e.g., Git) since all models are saved as code.

● Accessibility (for Collaboration). Works as a command-line interface (CLI) application. No

official support for collaboration between multiple teams.

Threat Modeling at Scale

 37

● Adoptability. Version 1.2.1 was released in March 2022. Actively maintained by a team of

community members; support is provided via issues in GitHub or a Slack group monitored by

developers. Documentation is available as part of the code base.

● Viability (Cost). Free to use. Maintained by OWASP team.

● Automation. Pre-defined threat rules can automatically suggest possible threats. System and

sequence diagrams can be automatically generated from the code. A threat report of the system

can be automatically generated from the same model (code).

● Applicability. Focus mainly on modeling a system and identifying security threats. Works for

abstract and high-level system models in general. Nonetheless, customized threats can be added

to the rule library such that they can be identified.

● Reusability. Pre-defined threat rules can be reused for different models. Code for system models

can be reused and imported.

● Extensibility. Customized threats can be added to the library. Moreover, the tool can be

extended at more levels as it is open-sourced.

4. ThreatModeler (commercial)

ThreatModeler's SaaS platform offers an API-first design, enabling automation and extensibility. Behind

the interface which offers the ability to drag & drop numerous out-of-the-box components representing

technical processes or architectural objects is a customizable framework (Threat Framework) that defines

the behavior of threat modeling exercises. Although agnostic of any specific threat modeling process,

users may highlight threats from any number of sources such as OWASP, MITRE ATT&CK, CAPEC, CIS,

or STRIDE.

ThreatModeler can also be deployed as an On-Prem Solution.

• Scalability. Provides good support for scalability by defining baseline system models.

Integrations include 2-way ticketing (eg Jira, ServiceNow), DevOps enforcement solutions, and

the ability to dynamically create models from numerous sources (AWS, Azure, CloudFormation

Templates, Terraform, or even arbitrary sources) via advanced product capabilities or APIs.

• Accessibility (for Collaboration). Works as a web application for users to collaborate within or

take advantage of ticketing integration support to help with tasks identified during exercises

without having to log into ThreatModeler. Role-based access control model controls visibility and

permissions across various users and lines of business.

• Adoptability. Version 6.0 was released in September, 2022 and is actively maintained.

Documentation inside of the product covers subject matters from beginner to advanced.

Additionally, ThreatModeler offers a Community whereby users of other customers may be

engaged for greater awareness of usage and processes. Hands-on, assisted onboarding is

provided with the enterprise version

• Viability (Cost). Licensing structure is based on the number of threat models an organization is

looking to build on a yearly basis. Annual subscriptions include unlimited user access, virtual

hands-on training, support, and access to customer success teams.

• Automation. Creation of diagrams can be automated , either via CloudModeler (AWS, Azure),

IAC Assist (CloudFormation), soon Terraform and ARM or even arbitrary sources using an open

API format with a simplified JSON structure. End-users may also utilize APIs for tasks such as

user management, reporting, or integration to/from other sources. DevOps plug-ins may be used

Threat Modeling at Scale

 38

to enforce threat modeling via pass/fail automation tasks and 2-way ticketing is available for Jira,

ServiceNow, or Azure Boards.

• Applicability. ThreatModeler offers dozens of templates out-of-the-box along with a Model

Marketplace featuring several prepared threat model diagrams. The Threat Framework contains

thousands of objects including architectural objects, components related to process flow, threats,

requirements, and other such intelligence aggregated from numerous sources or produced by

ThreatModelers research team.

ThreatModeler can be used for generic threat modeling and as well as in depth threat modeling

for various technology stacks like Cloud, Web Apps etc.

• Reusability. Templates, diagram objects, and threat model data may all be readily stored,

configured, and designated for reuse. These templates support any number of repeatable

patterns to minimize manual diagram efforts.

Additionally, importing capabilities may be extended to diagrams created with other tools (Visio,

MTM, Draw.IO).

• Extensibility. ThreatModeler's API-first design enables organizations to be creative with threat

modeling processes and even beyond the numerous native integrations. Templates can be

created to drive architectural patterns and baseline secure designs across multiple systems.

The Threat Framework may be customized to support in-house controls/requirements, and

compliance standards as well as contextualized prompting to understand the usage or

implementation of various architectural components or processes.

5. IriusRisk (commercial)

IriusRisk embeds the Draw.io diagram editor in its web application to enhance user experience when

drawing the DFDs of a system. When initializing the diagram and adding new elements, questionnaires

are provided to help users with configuration. Its threat library covers not only common knowledge bases

like CVE and CWE, but also self-defined threats from typical enterprise use cases, such as AWS

deployments. IriusRisk provides rather comprehensive threat evaluation, and offers priority and cost

estimation of the suggested countermeasures.

● Scalability. Provides good support for scalability, such as defining nested system components

for reuse, and importing existing system modules. Also provides integration with other tools in

SDL, including issue trackers (e.g., Jira) and testing frameworks (e.g, JUnit, Cucumber).

● Accessibility (for Collaboration). Works as a web application. Provides support for team

collaboration and resolving conflicts.

● Adoptability. Version 1.0 was released in 2015. Regularly maintained and updated since then.

The latest version 4.14.0 was released on April 5, 2023. Detailed documentation is provided.

Hands-on, assisted onboarding is provided with the enterprise version.

● Viability (Cost). Pricing varies with the use cases, available as SaaS or On-Premise. A

community edition is provided with very limited functionalities. Pricing is based on the number of

threat models created and maintained.

● Automation. The threat library can automatically suggest possible threats. Estimated costs of

mitigations are provided, and threats are prioritized based on the model. A threat report of the

system can be automatically generated.

Threat Modeling at Scale

 39

● Applicability. Focus on modeling a system, identifying security threats, and identifying

mitigations. Works mainly for general development, cloud-based, and enterprise development

use cases.

● Reusability. Existing system models can be reused and imported as modules when building new

models.

● Extensibility. The combination of support for the Open Threat Model specification and

customizable control and threat information provides good extensibility to organizations.

6. Threagile (open source)

Threagile is an open-source “threat modeling with code” solution written in Go. Threagile takes YAML

model definitions as input and outputs threat analysis results and data flows diagrams automagically

using pre-defined rules. The YAML-based system makes it easy for developers to maintain their threat

models using developer-oriented tools (i.e. their development IDE tools, or any YAML-aware editor). The

built-in analysis rules cover 40+ common security concerns.

• Scalability. System models are saved as YAML files, as such, new models can be built on top of

existing ones. Models of large-scale systems can be saved in multiple files for better modularity.

No official integration with other tools in SDL, but could be easily used with other tools (e.g., Git)

since all models are saved as code.

• Accessibility (for Collaboration). It can be run as CLI or a server with REST API. Docker

images are also available. No official support for collaboration between multiple teams, but

common code management and collaboration tools (e.g. GitHub, GitLab, IDEs and related tool

chains) can be used. Results in JSON format enable organizations to be DevOps ready in terms

of Threat Modeling.

• Adoptability. Last stable release Nov 2021. No update on its GitHub repo since then. Brief

documentation/video made available.

• Viability (Cost). Free to use. Community-supported.

• Automation. Pre-defined threat rules can automatically suggest possible threats. System

diagrams can be automatically generated from the code. A threat report of the system can be

automatically generated.

• Applicability. Focus mainly on modeling a system and identifying security threats. Works for

abstract and high-level system models in general. Nonetheless, customized threats can be added

to the rule library such that they can be identified. Works for general threat modeling on a

relatively abstract level.

• Reusability. Pre-defined threat rules can be reused for different models. Model definitions can be

reused.

• Extensibility. Customized threats can be added to the library. Moreover, the tool can be

extended by developers as it is open-sourced under a permissive license.

Threat Modeling at Scale

 40

