

© 2018 SAFECode – All Rights Reserved.

Fundamental Practices
for Secure Software
Development

Essential Elements of a Secure

Development Lifecycle Program

Third Edition

March 2018

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 2

Table of Contents

Executive Summary .. 4

Introduction ... 5

Audience ... 5

SAFECode Guidance and Software Assurance Programs ... 6

Application Security Control Definition .. 7

Actively Manage Application Security Controls .. 7

Design .. 9

Secure Design Principles ... 9

Threat Modeling .. 10

Develop an Encryption Strategy ... 11

Standardize Identity and Access Management .. 12

Establish Log Requirements and Audit Practices .. 14

Secure Coding Practices .. 15

Establish Coding Standards and Conventions ... 15

Use Safe Functions Only .. 15

Use Code Analysis Tools To Find Security Issues Early ... 17

Handle Data Safely ... 17

Handle Errors .. 20

Manage Security Risk Inherent in the Use of Third-party Components .. 21

Testing and Validation .. 22

Automated Testing ... 22

Manual Testing ... 24

Manage Security Findings .. 27

Define Severity ... 27

Risk Acceptance Process ... 28

Vulnerability Response and Disclosure ... 29

Define Internal and External Policies ... 29

Define Roles and Responsibilities .. 29

Ensure that Vulnerability Reporters Know Whom to Contact ... 30

Manage Vulnerability Reporters ... 30

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 3

Monitor and Manage Third-party Component Vulnerabilities ... 30

Fix the Vulnerability .. 31

Vulnerability Disclosure .. 31

Secure Development Lifecycle Feedback .. 32

Planning the Implementation and Deployment of Secure Development Practices 33

Culture of the Organization ... 33

Expertise and Skill Level of the organization .. 33

Product Development Model and Lifecycle .. 34

Scope of Initial Deployment .. 34

Stakeholder Management and Communications ... 35

Compliance Measurement .. 35

SDL Process Health ... 36

Value Proposition.. 36

Moving Industry Forward ... 37

Acknowledgements .. 37

About SAFECode ... 38

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 4

Executive Summary
Software assurance encompasses the development and implementation of methods and processes for

ensuring that software functions as intended and is free of design defects and implementation flaws. In

2008, the Software Assurance Forum for Excellence in Code (SAFECode) published the first edition of

“SAFECode Fundamental Practices for Secure Software Development” in an effort to help others in the

industry initiate or improve their own software assurance programs and encourage the industry-wide

adoption of fundamental secure development practices. In 2011, a second edition was published, which

updated and expanded the secure design, development and testing practices.

As the threat landscape and attack methods have continued to evolve, so too have the processes,

techniques and tools to develop secure software. Much has been learned, not only through increased

community collaboration but also through the ongoing internal efforts of SAFECode’s member

companies.

This, the third edition of “SAFECode Fundamental Practices for Secure Software Development,” includes

updates to the fundamental practices to reflect current best practice, new technical considerations and

broader practices now considered foundational to a successful Secure Development Lifecycle (SDL)

program.

• Requirement Identification

• Management of Third-party Component Components (both Open Source and Commercial Off-

the-shelf)

• Security Issue Management

• Vulnerability Response and Disclosure

This paper also includes considerations for those planning and implementing a set of secure development

practices, or, as commonly known, a Secure Development Lifecycle (SDL).

Although this version addresses more elements of a Secure Development Lifecycle, just as with the

original paper, this paper is not meant to be a comprehensive nor exhaustive guide. Rather, it is meant to

provide a foundational set of secure development practices that have been effective in improving software

security in real-world implementations by SAFECode members across their diverse development

environments and product lines.

It is important to note that these were identified through an ongoing collaboration among SAFECode

members and are “practiced practices.” By bringing these methods together and sharing them with the

larger community, SAFECode hopes to help the industry move from "theoretical" best practices to those

that are proven to be both effective and implementable.

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 5

Introduction
Following the publication of the SAFECode "Fundamental Practices for Secure Software Development,

v2" (2011), SAFECode also published a series of complementary guides, such as "Practices for Secure

Development of Cloud Applications" (with Cloud Security Alliance) and "Guidance for Agile Practitioners."

These more focused guides aligned with the move toward more dynamic development processes and

addressed some of the security concerns and approaches for web applications and cloud services. The

pace of innovation continues to increase, and many software companies have transitioned away from

multi-year development cycles in favor of highly iterative and more frequent releases, including some that

release "continuously." Additionally, reliance on third-party components, both commercial and OSS, is

growing, and these are often treated as black boxes and are reviewed with a different level of scrutiny

from in-house developed software – a difference that can introduce risk. Add to this a need to be

compliant with many standards and regulations, and software development teams can struggle to

complete the necessary security activities.

Acknowledging these concerns, a review of the secure software development processes used by

SAFECode members reveals that there are corresponding security practices for each activity in the

software development lifecycle that can help to improve software security. These practices are agnostic

about any specific development methodology, process or tool, and, broadly speaking, the concepts apply

to the modern software engineering world as much as to the classic software engineering world.

The practices defined in this document are as diverse as the SAFECode membership, spanning cloud-

based and online services, shrink-wrapped software and database applications, as well as operating

systems, mobile devices, embedded systems and devices connected to the internet. The practices

identified in this document are currently practiced among SAFECode members -- a testament to their

ability to be integrated and adapted into a wide variety of real-world development environments -- and

while each practice adds value, SAFECode members agree that to be effective, software security must

be addressed throughout the software development lifecycle, rather than as a one-time event or single

box on a checklist.

Audience

The guide is intended to help others in the industry initiate or improve their own software security

programs and encourage the industry-wide adoption of fundamental secure development methods. Much

of this document is built from the experience of large companies that build software that is used by many

millions and in some cases billions of users. Small software companies should also be able to benefit

from many of these recommendations.

Disclaimer: the practices presented herein focus on software development. Although these practices

support meeting some legal or regulatory requirements, the practices themselves do not specifically

address legal issues or some other aspects of a comprehensive security assurance approach, such as

physical access to facilities or physical defenses of devices.

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 6

SAFECode Guidance and Software Assurance
Programs
Software assurance cannot be achieved by a single practice, tool, heroic effort or checklist; rather it is the

result of a comprehensive secure software engineering process that spans all parts of development from

early planning through end of life. It is also important to realize that, even within a single organization and

associated Secure Development Lifecycle (SDL), there is no one-size-fits-all approach. The SDL must be

firm in its approach to security but flexible enough in its application to accommodate variations in a

number of factors, including different technologies and development methodologies in use and the risk

profile of the applications in question.

Every member of the organization plays a role in any effort to improve software security and all are

rightfully subject to high expectations from customers. While each one of the practices described in

subsequent sections can help an organization minimize the risk of vulnerabilities, a more holistic view is

required. A key principle for creating secure code is the need for an organizational commitment starting

with executive-level support, clear business and functional requirements, and a comprehensive secure

software development lifecycle that is applicable throughout the product's lifecycle and incorporates

training of development personnel. We believe that every technology developer has a responsibility to

implement and take part in such a process. This is fundamental to achieving a "security culture" in a

software organization. This paper describes fundamental practices for all roles that participate in software

development.

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 7

Application Security Control Definition
Identifying and managing Application Security Controls (ASCs) or security requirements and security

issues are essential aspects of an effective secure software development program. Clear and actionable

technical controls that are continuously refined to reflect development processes and changes in the

threat environment are the foundation upon which SDL tools and process are built. The practices

identified in this document and application security controls they drive will lead to the identification of

software design or implementation weaknesses, which when exploited expose the application,

environment or company to a level of risk. These issues must be tracked (see Manage Security Findings)

and action must be taken to improve the overall security posture of the product. Further, effective tracking

supports the ability to both gauge compliance with internal policies and external regulations and define

other security assurance metrics.

Actively Manage Application Security Controls

Regardless of the development methodology being used, defining application security controls begins in

(or even before) the Design stage and continues throughout an application’s lifecycle in response to

changing business requirements and an ever-evolving threat environment.

The inputs used to identify the necessary security requirements1 should include the secure design

principles described in the following section and feedback from the established vulnerability management

program, and may also require input from other stakeholders, such as a compliance team (e.g., if the

application must comply with standards such as HIPAA, PCI, GDPR, etc.) or an operations and

deployment team, because where and how the application is deployed may affect its security needs.

At a high level, the workflow should include:

1. Identifying threats, risks and compliance drivers faced by this application

2. Identifying appropriate security requirements to address those threats and risks

3. Communicating the security requirements to the appropriate implementation teams

4. Validating that each security requirement has been implemented

5. Auditing, if required, to demonstrate compliance with any applicable policies or regulations

1 Security requirements and application security controls are used interchangeably throughout this document.

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 8

Application Security Control Management

Each security requirement identified should be tracked through implementation and verification. A best

practice is to manage the controls as structured data in an Application Development Lifecycle

Management (ADLM) system rather than in an unstructured document.

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 9

Design
The creation of secure software involves activities at a number of levels. If the organizations that will use

the software have internal security policies or must comply with external laws or regulations, the software

must incorporate security features that meet those requirements. In addition to incorporating security

features, the architecture and design of the software must enable it to resist known threats based on

intended operational environment.

The process of threat modeling, when combined with appropriate consideration of security requirements

and the secure design principles, will enable the development team to identify security features that are

necessary to protect data and enable the system to meet its users’ requirements. These features perform

functions such as user identification and authentication, authorization of user access to information and

resources, and auditing of users’ activities as required by the specific application.

The fundamental practices described in this document primarily deal with assurance – with the ability of

software to withstand attacks that attempt to exploit design or implementation errors such as buffer

overruns (in native code) or cross-site scripting (in website code). In some cases, such as encryption and

sensitive data protection, the selection or implementation of security features has proven to be sufficiently

subtle or error-prone so that design or implementation choices are likely to result in vulnerabilities. The

authors of this document have included recommendations for the security of those features with the goal

of enabling organizations to produce systems that are secure from attack from any cause.

Secure Design Principles

The principles of secure system design were first articulated in a 1974 paper by Jerome Saltzer and

Michael Schroeder (The Protection of Information in Computer Systems) The principles from that paper

that have proven most important to the designers of modern systems are:

• Economy of mechanism: keep the design of the system as simple and small as possible.

• Fail-safe defaults: base access decisions on permission (a user is explicitly allowed access to a

resource) rather than exclusion (a user is explicitly denied access to a resource).

• Complete mediation: every access to every object must be checked for authorization.

• Least privilege: every program and every user of the system should operate using the least set

of privileges necessary to complete the job.

• Least common mechanism: minimize the amount of mechanism common to more than one

user and depended on by all users.

• Psychological acceptability: it is essential that the human interface be designed for ease of

use, so that users routinely and automatically apply the protection mechanisms correctly.

• Compromise recording: it is sometimes suggested that mechanisms that reliably record that a

compromise of information has occurred can be used in place of more elaborate mechanisms

that completely prevent loss.

The Saltzer and Schroeder principles set a high bar for the designers of secure systems: following them

strictly is not a simple task. Nonetheless, designers who refer to them and attempt to follow their guidance

are more likely to create systems that meet the goals of protecting information and resisting attack.

http://web.mit.edu/Saltzer/www/publications/protection/

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 10

In the years since Saltzer and Schroeder published their paper, experience has demonstrated that some

additional principles are important to the security of software systems. Of these, the most important are:

• Defense in depth: design the system so that it can resist attack even if a single security

vulnerability is discovered or a single security feature is bypassed. Defense in depth may involve

including multiple levels of security mechanisms or designing a system so that it crashes rather

than allowing an attacker to gain complete control.

• Fail securely: a counterpoint to defense in depth is that a system should be designed to remain

secure even if it encounters an error or crashes.

• Design for updating: no system is likely to remain free from security vulnerabilities forever, so

developers should plan for the safe and reliable installation of security updates.

The principles described above are relevant to the design of any system, whether for client or server,

cloud service, or Internet-of-Things device. The specifics of their application will vary – a cloud service

may require multiple administrative roles, each with its own least privilege, while an IoT device will require

special considerations of the need for security updates and of the need to fail securely and safely. But the

principles are general and provide valuable security guidance for the designers and architects of all

classes of systems.

Threat Modeling

Threat modeling is a security focused design activity and a

fundamental practice in the process of building trusted technology; it

has proven to be one of the best “return on investment” activities for

identifying and addressing design flaws before their implementation

into code.

The greatest benefit from threat modeling is realized when it is

performed early in the development lifecycle before code is

committed. Even if that cannot be achieved, threat modeling

provides value in mapping out a system to understand and prioritize

its weaknesses. Downstream activities such as static analysis,

security testing and customer documentation can be greatly guided

and focused based on the context provided by threat modeling.

There are many possible ways of generating a threat model, and the

consensus is that there is no one single perfect way. A valid process

is one that is repeatable and manageable, and above all one that

can identify potential threats.

More information about the benefits of threat modeling, some of the methodologies in use, simple

examples and some of the pitfalls encountered in day-to-day practical threat modeling, as well as more

complete references, may be found in the SAFECode paper “Tactical Threat Modeling."

Perform Architectural and Design Reviews

Architectural and design review should be incorporated into a security program. A poorly designed

system that allows a malicious actor to fully compromise a system and its data through a design or logic

https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 11

flaw can be catastrophic and difficult to remediate. The design review should be conducted with reference

to the design principles above. To the extent that an architecture falls short of meeting those principles, it

is likely to fall short of its goal of protecting information for its users.

Develop an Encryption Strategy

Encryption is the most common mechanism to protect data from unintended disclosure or alteration,

whether the data is being stored or transmitted. While it is possible to retroactively build encryption into a

feature, it is easier, more efficient and more cost-effective to consider encryption during the design

process. Threat modeling, described earlier in this section, is a useful tool to identify scenarios that

benefit from encryption; however, developing an encryption strategy (how to encrypt, store and manage

encryption keys, etc.) is typically enough effort to be tackled as its own task. Most larger organizations

benefit from a centralized encryption strategy designed, deployed and governed (via a review board) by

experts in cryptography, rather than having individual teams pursue redundant and potentially

incompatible or flawed efforts.

There are several key components of an encryption strategy:

• Definitions of what to protect: at the very least, all internet traffic should be encrypted while in

transit, and it is recommended that, barring a compelling reason to the contrary, traffic within

private networks should also be encrypted. When storing data, whether in a file, within cloud

storage, within a database, or other persistent location, organizations should develop clear

criteria for what types of data should be encrypted, and what mechanisms are acceptable to

protect that data.

• Designation of mechanisms to use for encryption: despite the common usage of encryption, it

remains quite challenging to implement correctly. There are numerous encryption algorithms, key

lengths, cipher modes, key and initial vector generation techniques and usages, and

cryptographic libraries implementing some or all of these functions. Making an incorrect choice for

any one of these aspects of encryption can undermine the protection. Rather than having

developers figure out the correct choice at the time of implementation, organizations should

develop clear encryption standards that provide specifics on every element of the encryption

implementation. Only industry-vetted encryption libraries should be used, rather than custom

internal implementations, and only strong, unbroken algorithms, key lengths and cipher modes

(for the specific scenarios) should be allowed.

For encryption in transit, only strong versions of the encryption protocol should be allowed. For

example, all versions of SSL are considered broken, and early versions of TLS are no longer

recommended due to concerns about weaknesses in the protocol. There are several freely

available tools2 that can be used to verify that only strong versions of a transit encryption protocol

are in use.

For encryption at rest, in addition to the considerations above, there is a decision of how to

deploy that encryption. Solutions such as disk encryption, OS credential/key managers, and

database transparent encryption are relatively easy to deploy and provide protection against

2 SSLlabs maintains a list of SSL/TLS assessment tools

https://github.com/ssllabs/research/wiki/Assessment-Tools

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 12

offline attack. If the primary risk is theft of a device or disk, these solutions are typically the best

option, as they require little to no custom application logic to implement, and most cloud and

mobile platforms make enabling this form of storage encryption quite easy (or have it enabled by

default). However, these solutions do not protect against any compromise of application logic and

are insufficient protection for very sensitive or highly confidential data. For these scenarios the

application must implement encryption specifically against the data prior to writing it to storage.

As previously mentioned, threat modeling can be a useful tool to identify scenarios where

protection solely against offline attack is insufficient, and where encryption implemented within

application logic is justified.

• Decide on a key and certificate management solution: encrypting data is only one half of an

encryption strategy. The other half is the solution to manage encryption keys and certificates.

Every party that can access an encryption key or certificate is a party that can access the

encrypted data, and so a solution to manage the keys and certificates should control who

(whether a person, or a service) has access, and provide a clear audit log of that access.

Additionally, keys and certificates have a limited lifespan, with the exact duration being decided

during the development of the encryption strategy. The key and certificate management solutions

should have a mechanism to manage the lifecycle of keys and certificates, providing mechanisms

to deploy new keys and certificates once the previous ones are near expiration.

Hard-coding encryption keys (or other secrets) within source code leaves them very vulnerable

and must be avoided.

• Implement with cryptographic agility in mind: encryption algorithms might potentially be

broken at any time, even if they are considered current best practices, and encryption libraries

may have vulnerabilities that undermine otherwise sound algorithms. An encryption strategy

should specify how applications and services should implement their encryption to enable

transition to new cryptographic mechanisms, libraries and keys when the need arises.

Standardize Identity and Access Management

Most products and services have the need to verify which principal, either human user or other service or

logical component, is attempting to perform actions and whether the principal in question is authorized to

perform the action it is attempting to invoke. These actions should all be auditable and logged in the

logging system being used. Authenticating the identity of a principal and verifying its authorization to

perform an action are foundational controls that other security controls are built upon, and organizations

should standardize on an approach to both authentication and authorization. This provides consistency

between components as well as clear guidance on how to verify the presence of the controls. Threat

modeling will help identify where authorization checks for access should be applied, and the secure

design principles, such as least privilege, economy of mechanism, and complete mediation are

fundamental to the design of robust Identity and access management mechanisms.

Several components comprise identity and access management, and the standard that an organization

applies to its products and services should include:

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 13

• The mechanism by which users (both end-users and organization administrators)

authenticate their identities. Many aspects must be considered in order to provide assurance

that the users are who they say they are: how they initially sign up or are provisioned, the

credentials (including multi-factor credentials) they provide each time they authenticate, how they

restore their access to the system should they lose a necessary credential, how they authenticate

when communicating to a help desk for the product, etc. An oversight in any of these elements

can undermine the security of the authentication system, and by extension the whole product. If

every feature team builds its own authentication system, there is a much higher likelihood that

mistakes will be made.

Organizations should delegate authentication to a third-party identity provider via a mechanism

such as OpenID, incorporate into their product a prebuilt identity solution from an organization

specializing in creating authentication technologies, or centralize the design and maintenance of

an authentication solution with an internal team that has expertise specific to authentication.

• The mechanism(s) by which one service or logical component authenticates to another,

how the credentials are stored, and how they are rotated in a timely fashion. Much like

encryption keys, service credentials should not be stored within a source repository (neither hard-

coded nor as a config file), as there are insufficient protections preventing the disclosure of those

credentials. Credential rotation for services can be challenging if not designed into a system, as

both the consumer and producer services need to synchronize the change in credentials.

• The mechanism(s) that authorizes the actions of each principal. One of the most explicit

security tasks when building an application or service is developing a mechanism to control which

actions each principal is allowed to perform. Many of the secure design principles previously

discussed apply directly to authorization. Specifically, an authorization strategy should be based

on complete mediation, where every access or action against every object is checked for

authorization. The safest way to ensure this is to build the application such that, without an

explicit authorization check, the default state is to deny the ability to perform the access or action

(an approach commonly referred to as “default deny”). This approach makes it far easier to detect

when there is an oversight in applying authorization, and the result of the oversight is to put the

system in an overly restrictive rather than overly permissive state. Additionally, an authorization

strategy should be designed with the idea of least privilege so that all principals have only the

minimum number of permissions necessary to complete their tasks within the system, and no

permissions to perform tasks outside of their allowed set.

Several different authorization schemes have been developed to achieve these various design principles;

for example: mandatory or discretionary access controls, role-based or attribute-based access controls,

etc. Each of these schemes conveys benefits and drawbacks; for example, role-based access control is

often ideal when there are relatively few categories of principal that interact with the system but can

become either difficult to manage or overly permissive when the roles become numerous. Often an

authorization strategy is not a matter of choosing one specific approach but rather of determining which

mixture of the various schemes together makes the most sense for an organization’s scenarios, to

balance the benefits and drawbacks while still achieving the goals of the security design principles.

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 14

Organizations should codify their approaches for authorization so that they are implemented consistently

within a product or service.

Establish Log Requirements and Audit Practices

In the event of a security-related incident, it is important to be able to piece together relevant details to

determine what happened. Well-designed application, system and security log files provide the ability to

understand an application’s behavior and how it has been used at any moment in time. They are the

fundamental data sources that inform automated Security Information and Event Management (SIEM)

systems alerting.

The creation and maintenance of these logs is a critical set of software design decisions that is informed

by the business and system requirements, the threat model, and the availability of log creation and

maintenance functions in the deployed environment, with uses that range from security incident

identification to system event optimization. The content of the log files should always be determined by

the group or groups that will need to consume the log file contents. Because logging affects the available

system resources of the local computer, it is important not only to capture the critical information but to

restrict information capture to only the needed data. It is equally important to carefully identify what

security information is relevant and needs to be logged, where the logs will be stored, for how long the

logs will be retained and how the logs will be protected.

If possible, use the logging features of the operating system or other established tools, rather than

creating a new logging infrastructure. The underlying infrastructure for platform logging technologies is

likely to be secure and provide features such as tamper protection. It is critically important that any

logging system provide controls to prevent tampering and offer basic configuration to ensure secure

operation.

Ensure that security logs are configurable during application runtime. This allows the richness of logging

information to be adjusted, which can help to provide more effective alerts to use in investigating security

events.

Even with carefully considered and configured logging, it is very easy to accumulate vast amounts of log

data, and therefore it is important to differentiate among logging needs. Monitoring data is relevant to

configuration troubleshooting, usage, performance and ongoing feature development. Security logs are

relevant to forensic analysis in the event of an incident. Unless logs are moved to a central location and

archived, which is recommended, do not delete local log files too quickly. Deletion could potentially hinder

required investigations into past events.

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 15

Secure Coding Practices
When developers write software, they can make mistakes. Left undetected, these mistakes can lead to

unintentional vulnerabilities that potentially compromise that software or the data it processes. A goal of

developing secure software is to minimize the number of these unintentional code-level security

vulnerabilities. This can be achieved by defining coding standards, selecting the most appropriate (and

safe) languages, frameworks and libraries, ensuring their proper use (especially use of their security

features), using automated analysis tools and manually reviewing the code.

Establish Coding Standards and Conventions

When technology choices are made, it is important to understand which classes of security issues are

inherited and to decide how they will be addressed. Once these technology decisions are made,

appropriate coding standards and conventions that support both writing secure code and the re-use of

built-in security features and capabilities should be created, maintained and communicated to the

development team.

Where possible, use built-in security features in the frameworks and tools selected and ensure that these

are on by default. This will help all developers address known classes of issues, systemically rather than

individually. Where multiple options exist to address issues, choose one as the standard. Look for classes

of security issues that a security feature, programming language or framework may mitigate on the

developer's behalf and invest in the re-use of such features or frameworks instead of re-inventing them in-

house. To the greatest possible extent, any frameworks/library/component use should be loosely coupled

so that it can be easily replaced/upgraded when needed.

Standards must be realistic and enforceable. As coding standards and conventions are created, it is a

great time to think about testing and validation. For example, what tools will you have at your disposal to

help you validate that code follows the established policies? Would you need to rely on manual code

review? Will it be possible to automate tests to help you with that validation? Incorporating the

considerations above can lead to catching problems more effectively earlier in the SDL when they are

less expensive to find and fix.

Resources

• OWASP – Secure Coding Practices, Quick Reference Guide

• Secure Coding Guidelines for Java SE

• Cert Secure Coding Wiki

Use Safe Functions Only

Many programming languages have functions and APIs whose security implications were not appreciated

when initially introduced but are now widely regarded as dangerous. Although C and C++ are known to

have many unsafe string and buffer manipulation functions, many other languages have at least some

functions that are challenging to use safely. For example, dynamic languages such as JavaScript and

https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 16

PHP have several functions that generate new code at runtime (eval, seTtimeout, etc.) and are a frequent

source of code execution vulnerabilities.

Developers should be provided guidance on what functions to avoid and their safe equivalents within the

coding standards described in the preceding section. Additionally, tooling should be deployed to assist in

identifying and reviewing the usage of dangerous functions. Many static analysis and linting tools provide

a mechanism to identify usage during build time, and some integrate into IDEs (Integrated Development

Environments) to provide authoring time guidance to developers as they write code. Additionally, there

are resources such as Microsoft’s freely available banned.h header file that, when included in a project,

will cause usage of unsafe functions to generate compiler errors. It is quite feasible to produce code

bases free of unsafe function usage.

CWE (Common Weakness Enumeration) References

● CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

● CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

● CWE-805: Buffer Access with Incorrect Length Value

References

• ISO/IEC 9899:201x Programming Languages C - Annex-K Bounds Checking Interfaces

• Updated Field Experience with Annex K — Bounds Checking Interfaces

• Security Development Lifecycle (SDL) Banned Function Calls

Use Current Compiler and Toolchain Versions and Secure Compiler Options

Using the latest versions of compilers, linkers, interpreters and runtime environments is an important

security practice. Commonly, as languages evolve over time they incorporate security features, and

developers using previous compiler and toolchain versions cannot make use of these security

improvements in their software. For example, memory corruption issues, including buffer overruns and

underruns, remain a common source of serious vulnerabilities in C and C++ code. To help address these

vulnerabilities, it is important to use C and C++ compilers that automatically offer compile-time and run-

time defenses against memory corruption bugs. Such defenses can make it harder for exploit code to

execute predictably and correctly.

Enable secure compiler options and do not disable secure defaults for the sake of performance or

backwards compatibility. These protections are defenses against common classes of vulnerabilities and

represent a minimum standard.

Over time, software projects become dependent on a certain compiler version, and changing the version

can be cumbersome; therefore, it is essential to consider the compiler version when starting a project.

CWE References

● CWE-691: Insufficient Control Flow Management
● CWE-908: Use of Uninitialized Resource

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/805.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://cwe.mitre.org/data/definitions/691.html
https://cwe.mitre.org/data/definitions/908.html

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 17

Verification

• A Microsoft tool named the BinSkim Binary Analyzer can verify whether most of the compiler and

linker options (/GS, /DYNAMICBASE, /NXCOMPAT and /SAFESEH) are enabled in a Windows

image: https://github.com/Microsoft/binskim.

Resources

• This article examines Microsoft and GCC toolchains for the C, C++ and Objective C languages

and how they can be configured to provide a wide variety of security benefits:

https://www.owasp.org/index.php/C-Based_Toolchain_Hardening.

Use Code Analysis Tools to Find Security Issues Early

Using tools to search the code to identify deviation from requirements helps verify that developers are

following guidance and helps identify problems early in the development cycle. Build the execution of

these tools into the "normal" compile/build cycle. This relieves developers of having to make special

efforts to ensure that coding standards are being consistently followed. Using static analysis tools that

plug directly into the IDE allows developers to find security bugs effectively without leaving their native

IDE environment and is on par with using the latest versions of compilers and links with appropriate

security switches, as discussed in the previous section.

Readers should also be aware that frameworks can only offer protection up to a certain point and

developer-introduced bugs could easily lead to security vulnerabilities. Secure code review is a good way

to identify vulnerabilities that result due to logic bugs in the source code.

This practice and its verification are covered in more detail in the Testing and Validation section.

Resources

• A Microsoft tool named the DevSkim is a set of IDE plugins that provide inline analysis in the

development environment as the developer writes code. The goal here is to give developers

notification when they introduce a vulnerability (that can be detected) in order to fix the issue at

the time of introduction and help educate the developer -- https://github.com/Microsoft/DevSkim.

Handle Data Safely

This is "Security 101:" all user-originated input should be treated as untrusted. The origin of data is often

not clearly defined or understood, and applications can consume and process data that originates from

the Internet or other network, through a file, from another application via some form of inter-process

communication or other data channel. For example, in web applications the same user input data may be

handled differently by the various components of the technology stack; the web server, the application

platform, other software components and the operating system. If this data is not handled correctly at any

point, it can, through a flaw in the application, be transformed into executing code or unintentionally

provide access to resources.

In these situations, input validation is often identified as a defense that is applied at the boundary with the

internet. This approach is inadequate, and a better approach is to ensure that each area in the application

https://github.com/Microsoft/binskim
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://github.com/Microsoft/DevSkim

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 18

stack defends itself against the malicious input it may be vulnerable to. For example, parameterized

queries can be used for database access to help prevent SQL injection attacks. A good threat model will

help identify the boundaries and the threats.

Each component protects against malicious input

Issues also arise when validation filters are not applied recursively or when using multiple steps in the

validation logic. If more than one validation step is performed, take care not to provide an opportunity for

an attacker to exploit the ordering of the steps to bypass the validation.

However, even when taking these steps, many vulnerabilities remain as a result of processing data in

unsafe ways, and therefore input validation should only be considered as a defense in depth approach;

other steps such as enforcing data segregation can help prevent data from becoming application logic.

Such steps may include:

• Encoding, which ensures the data is transformed so that it will be interpreted purely as data

in the context where it is being used

• Data binding, which prevents data from being interpreted as control logic by binding it to a

specific data type

These strategies are not mutually exclusive, and in many situations both should be applied together.

Even with all of these approaches, data validation is tricky to get right. And blocking known bad and

allowing known good with some validation may be the only option in some instances, especially if there is

no data segregation technique available for a specific context in which the data is used.

A different problem can occur with canonicalization. Data may be encoded into various formats to allow

special characters and binary data to be used, and different components in the application stack may not

always correctly parse or process those formats. This can lead to vulnerabilities. Canonicalization is the

process for converting data that establishes how these various equivalent forms of data are resolved into

a “standard,” “normal” or canonical form. Canonical representation ensures that the various forms of an

expression do not bypass any security or filter mechanisms. When making security decisions on user

supplied input, all decoding should be executed first using appropriate APIs until all encoding is resolved.

Next, the input needs to be canonicalized, then validated. Input after canonicalization should be validated

and either accepted or rejected. Only after canonicalization can a decision be made.

Note that sanitization (ensuring that data conforms to the requirements of the component that will

consume it) is not the same as canonicalization. Sanitization can involve removing, replacing or encoding

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 19

unwanted characters or escaping characters. Input from untrusted sources should always be sanitized

and when available the sanitization and validation methods provided by components should be used

because custom-developed sanitization can often miss hidden complexities.

Canonicalization, Validation, and Sanitization can be easily confused, as they frequently are used

together. As a simple example, many developers will at some point have to deal with the fact that different

countries and cultures write the date in different ways. They recognize that “Jan 30, 2018,” “30-1-2018,”

and “2018/01/30” are all different ways to represent the same date, and canonicalization is the process of

translating those different representations into a consistent format (e.g., MM-DD-YYYY in the US) to avoid

confusion. Sanitization, on the other hand, would be recognizing that “<script>alert(1)</script>” doesn’t

belong in a date and stripping it out. Validation would be recognizing that “<script>alert(1)</script>”

doesn’t belong in valid input for a date, and rather than stripping it out, rejecting the input. In that model,

Validation replaces Sanitization, and is typically the safer approach. Validation would also involve

verifying that Canonicalization of the date was successful, and that the final date was within whatever

range the application expected.

Dates are one example where content may have different representations for the same information based

on how different users chose to represent the data, but applications will additionally encounter different

formats based on how computers might represent data. File paths, encoding schemes, character sets (8

Bit ASCII, 7 Bit ASCII, UTF-8, UTF-16, etc.), and little and big endian binary formats are all examples of

differing data format schemes that applications may need to canonicalize. In many cases the formats are

sufficiently complex that they require significant expertise to either Canonicalize, Validate, or Sanitize,

and the most feasible approach is to use a library created by experts on the formats to perform one or

more of those functions.

CWE References

• CWE-20: Improper Input Validation

• CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection')

• CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

Verification

• OWASP offers pertinent testing advice to uncover SQL injection issues (see Resources, below).

Various tools can help detect SQL injection vulnerabilities. Some of these are listed in the Tools

section, below.

• Due to the variety of encodings and formats, verification of correct and complete canonicalization

is a good candidate for fuzzing and code review. See "Perform Fuzz/Robustness Testing" in the

Testing Recommendations section for more details.

References

• OWASP; SQL Injection; https://www.owasp.org/index.php/SQL_Injection

• OWASP; Data Validation; https://www.owasp.org/index.php/Data_Validation

• Writing Secure Code 2nd Ed.; Chapter 11 “Canonical Representation Issues;” Howard & Leblanc;

Microsoft Press

• Hunting Security Bugs; Chapter 12 “Canonicalization Issues;” Gallagher, Jeffries & Lanauer;

Microsoft Press

http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/22.html
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Data_Validation

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 20

Books, Articles and Reports

• Preventing SQL Injections in ASP; Neerumalla; https://msdn.microsoft.com/en-

us/library/cc676512.aspx

• MSDN Library; PathCanonicalize Function; https://msdn.microsoft.com/en-

us/library/%20bb773569(VS.85).aspx

• Microsoft KnowledgeBase; How to Programmatically Test for Canonicalization Issues with ASP.

NET; http://support.microsoft.com/kb/887459

Handle Errors

All applications run into errors at some point. While errors from typical use will be identified during

functional testing, it is almost impossible to anticipate all the ways an attacker may interact with the

application. Given this, a key feature of any application is to handle and react to unanticipated errors in a

controlled and graceful way, and either recover or present an error message.

While anticipated errors may be handled and validated with specific exception handlers or error checks, it

is necessary to use generic error handlers or exception handlers to cover unanticipated errors. If these

generic handlers are hit, the application should cease performing the current action, as it should now be

assumed to be in an unknown state. The integrity of further execution against that action can no longer be

trusted.

Error handling should be integrated into the logging approach, and ideally different levels of detailed

information should be provided to users as error messages and to administrators in log files.

When notifying the user of an error, the technical details of the problem should not be revealed. Details

such as a stack trace or exception message provide little utility to most users, and thus degrade their user

experience, but they provide insight to the attacker about the inner workings of the application. Error

messages to users should be generic, and ideally from a usability perspective should direct users to

perform an action helpful to them, such as “We’re sorry, an error occurred, please try resubmitting the

form.” or “Please contact our support desk and inform them you encountered error 123456.” This gives an

attacker very little information about what has gone wrong and directs legitimate users on what to do next.

CWE References

• CWE 388: Error Handling

• CWE 544: Missing Standardized Error Handling Mechanism

Associated References

• https://www.owasp.org/index.php/Error_Handling

https://msdn.microsoft.com/en-us/library/cc676512.aspx
https://msdn.microsoft.com/en-us/library/cc676512.aspx
https://msdn.microsoft.com/en-us/library/%20bb773569(VS.85).aspx
https://msdn.microsoft.com/en-us/library/%20bb773569(VS.85).aspx
http://support.microsoft.com/kb/887459
https://cwe.mitre.org/data/definitions/388.html
https://cwe.mitre.org/data/definitions/388.html
https://cwe.mitre.org/data/definitions/544.html
https://cwe.mitre.org/data/definitions/544.html
https://www.owasp.org/index.php/Error_Handling
https://www.owasp.org/index.php/Error_Handling

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 21

Manage Security Risk Inherent in the Use of
Third-party Components
To innovate and deliver more value in shorter time periods, developers increasingly use third-party

frameworks and libraries. These can be commercial off-the-shelf-products (COTS) or increasingly, these

can come from open source software (OSS) projects. In either case, there is inherent security risk in the

use of third-party components (TPCs) and these risks must be investigated and evaluated before use.

Often, these components are treated as black boxes and are afforded less scrutiny than comparable

components written in-house. This different level of review introduces risks that, depending on security

issues in the TPCs, may have an impact on the overall security of the systems in which they are used.

Developers must be aware that they inherit security vulnerabilities of the components they incorporate

and understand that choosing components for expedience (e.g., to reduce development time) can come

at the cost of security when those components are integrated in production.

In general, you should choose established and proven frameworks

and libraries that provide adequate security for your use cases, and

which defend against identified threats. Do not waste resources

and introduce new risks by re-implementing security features that

are native to the framework. Without extensive testing, security

failures will result and these security failures will often be nuanced

and difficult to detect, leaving you and your users with a false sense

of security.

Understanding the security posture is not enough to enable the

making of informed decisions regarding a TPC’s risks3.

SAFECode’s white paper “Managing Security Risks Inherent in the

Use of Third-party Components” goes into detail on these

challenges and offers guidelines for addressing them.

CWE References

● CWE-242: Use of Inherently Dangerous Function

● CWE-657: Violation of Secure Design Principles

● CWE-477: Use of Obsolete Functions

3 The SAFECode Whitepaper “The Software Supply Chain Integrity Framework” provides a framework for assessing software supply
chain integrity.

https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://cwe.mitre.org/data/definitions/242.html
http://www.cvedetails.com/cwe-details/657/Violation-of-Secure-Design-Principles.html
https://cwe.mitre.org/data/definitions/477.html
http://safecode.org/wp-content/uploads/2014/06/SAFECode_Supply_Chain0709.pdf

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 22

Testing and Validation
An essential component of an SDL program, and typically the first set of activities adopted by an

organization, is some form of security testing. For organizations that do not have many security

development practices, security testing is a useful tool to identify existing weaknesses in the product or

service and serve as a compass to guide initial security investments and efforts, or to help inform a

decision on whether or not to use third-party components. For organizations with mature security

practices, security testing is a useful tool both to validate the effectiveness of those practices, and to

catch flaws that were still introduced.

There are several forms of security testing and validation, and most mature security programs employ

multiple forms. Broadly, testing can be broken down into automated and manual approaches, and then

further categorized within each approach. There are tradeoffs with each form of testing, which is why

most mature security programs employ multiple approaches.

Automated Testing

As in other areas of development, automated security testing allows for repeatable tests done rapidly and

at scale. There are several commercial or free/open source tools that can be run either on developers'

workstations as they work, as part of a build process on a build server or run against the developed

product to spot certain types of vulnerabilities. While some automated security tools can provide highly

accurate and actionable results, automated security tools tend to have a higher rate of false positives and

negatives than a skilled human security tester manually looking for vulnerabilities. Although some tools

possess a large dictionary of flaws that is updated and expanded over time, currently they do not

independently learn and evolve as they test, as a human does. Automated tools are adopted because of

the speed and scale at which they run, and because they allow organizations to focus their manual

testing on their riskiest components, where they are needed most.

There are many categories of automated security testing tools. This section outlines six testing categories

used by SAFECode members: Static Analysis Security Testing (SAST), Dynamic Analysis Security

Testing (DAST), fuzzing, software composition analysis, network vulnerability scanning and tooling that

validates configurations and platform mitigations.

Use Static Analysis Security Testing Tools

Static analysis is a method of inspecting either source code or the compiled intermediate language or

binary component for flaws. It looks for known problematic patterns based simply on the application logic,

rather than on the behavior of the application while it runs. SAST logic can be as simple as a regular

expression finding a banned API via text search, or as complex as a graph of control or data flow logic

that seems to allow for tainted data to attack the application. SAST is most frequently integrated into build

automation to spot vulnerabilities each time the software is built or packaged; however, some offerings

integrate into the developer environment to spot certain flaws as the developer is actively coding.

SAST tends to give very good coverage efficiently, and with solutions ranging from free or open source

security linters to comprehensive commercial offerings, there are several options available for an

organization regardless of its budget. However, not every security problem lends itself to discovery via

pattern or control flow analysis (e.g., vulnerabilities in business logic, issues introduced across multiple

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 23

application tiers or classes of issues created at runtime), nor are the rulesets used by SAST offerings

typically completely comprehensive for all problems that hypothetically can be found via such analysis.

On-premise static analysis tools can benefit from human experts to tune the tool configuration and triage

the results to make the results more actionable for developers and reduce false positive rates. Software

as a Service (SaaS) solutions are available that are constantly tuned to reduce false positives and make

results more effective. In either case, there is a compromise between false negatives (tuning out critical

security issues) and false positives (non-issues being reported).

Perform Dynamic Analysis Security Testing

Dynamic analysis security testing runs against an executing version of a program or service, typically

deploying a suite of prebuilt attacks in a limited but automated form of what a human attacker might try.

These tests run against the fully compiled or packaged software as it runs, and therefore dynamic

analysis is able to test scenarios that are only apparent when all of the components are integrated. Most

modern websites integrate interactions with components that reside in separate source repositories – web

service calls, JavaScript libraries, etc. – and static analysis of the individual repositories would not always

be able to scrutinize those interactions. Additionally, as DAST scrutinizes the behavior of software as it

runs, rather than the semantics of the language(s) the software is written in, DAST can validate software

written in a language that may not yet have good SAST support.

If a DAST test is well authored it also provides validation that a flaw is actually exploitable. Most SAST

tools identify patterns that are potentially exploitable if an attacker can control the data consumed by

those patterns, but do not validate that an attacker can control that data. With DAST, if a test is

successful, it has validated that an attacker actually can exploit the vulnerability.

However, DAST has limitations. It is much slower than SAST and can only test against functionality it can

discover. Because DAST solutions can crawl a website enumerating functionality after some initial setup,

web applications functionality discovery is semi-automatic. For other applications (desktop, mobile clients,

specialized server applications, etc.) where there is not a standardized markup describing the interface,

most DAST solutions require the interactions to be manually programmed. Once set up, the tests can be

repeated with little additional cost, but there is an initial setup cost. Additionally, DAST solutions typically

have a much smaller dictionary of scenarios they look for relative to SAST. This is because the cost for

the tool maker to produce a reliable test is higher. DAST solutions often have difficulty scanning single-

page applications (SPA) due to the fact that the page is not reloaded but is dynamically rewritten by the

server. For organizations with SPA requirements, care should be taken in selecting a testing solution that

meets the application needs. Coupling with SAST will offer fuller scanning coverage for all applications,

and even more so for SPA.

Fuzz Parsers

Fuzzing is a specialized form of DAST (or in some limited instances, SAST). Fuzzing is the act of

generating or mutating data and passing it to an application’s data parsers (file parser, network protocol

parser, inter-process communication parser, etc.) to see how they react. While any single instance of a

fuzzed input is unlikely to discover vulnerable behavior, repeating the process thousands or many millions

of times (depending on how thoroughly the software had been fuzzed in the past) often will.

https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 24

The benefit of fuzzing is that once the automation is set up it can run countless distinct tests against code

with the only cost being compute time. Fuzzing produces far better coverage of parsing code than either

traditional DAST or SAST. However, depending on scenario, it can be laborious to set up. Also,

debugging the issues that fuzzing finds can often be time consuming. Fuzzing will have the biggest payoff

for parsers written in non-memory-safe languages (e.g., C, C++) that can be easy for an attacker to

access with malicious data. A threat model is quite helpful for identifying these parsers.

Network Vulnerability Scanning

This testing category is more prevalent in information and network security programs than SDL because

vulnerability scanning tools find previously discovered vulnerabilities (CVEs), including those in third-party

software, but are less useful for newly written applications. That said, these tools can add value to an

SDL program as long as it is understood what vulnerabilities these tools are designed to identify. This

category of testing is required for applications delivered as a physical or virtual appliance or deployed in a

SaaS environment where security of the operating system environment is important. It is also valuable to

scan any application in its installed state to ensure that no additional vulnerabilities are introduced during

or after installation. To be most effective in this scenario, a baseline scan should be performed before the

application installation, then the application should be scanned again after installation and configuration;

comparing these results will give insight as to any vulnerabilities introduced by the application installation.

Verify Secure Configurations and Use of Platform Mitigations

Most security automation seeks to detect the presence of security vulnerabilities, but as outlined in the

secure coding practices section, it is also important that software make full use of available platform

mitigations, and that it configure those mitigations correctly. Several tools can ensure that a compiled

application has opted into OS platform mitigations such as Address Space Layout Randomization

(ASLR), Data Execution Prevention (DEP), Control Flow Guard (CFG), and other mitigations to protect

the application. Similarly, there are several security tools and freely available web services that verify that

a website is opting into security-relevant HTTP headers such as x-frame-options, content security policy,

HSTS, secure and HTTP Only cookie flags, and that a server’s SSL/TLS configuration is free of protocol

versions and cipher suites known to be insecure. Regular validation that software and services are

correctly using available platform mitigations is usually far simpler to deploy and run than other forms of

security automation, and the findings have very low false positive rates.

Perform Automated Functional Testing of Security Features/Mitigations

Organizations that use unit tests and other automated testing to verify the correct implementations of

general features and functionality should extend those testing mechanisms to verify security features and

mitigations designed into the software. For example, if the design calls for security-relevant events to be

logged, unit tests should invoke those events and verify corresponding and correct log entries for them.

Testing that security features work as designed is no different from verifying that any other feature works

as designed and should be included in the same testing strategy used for other functionality.

Manual Testing

Manual testing is generally more laborious and resource intensive than automated testing, and unlike

automated testing it requires the same investment every time that it is performed in order to produce

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 25

similar coverage. In contrast to automated testing, because human testers can learn, adapt and make

leaps of inference, manual testing can evolve based on previous findings and subtle indicators of an

issue.

Perform Manual Verification of Security Features/Mitigations

Just as security features should be included in existing unit tests and other automated functionality

verifications, they should be included in any manual functional testing efforts that are performed.

Organizations employing manual quality assurance should include verification of security features and

mitigations within the test plan, as these can be manually verified in the same way that any non-security

feature is verified. Organizations that rely more heavily on automated functional testing should still

perform occasional manual spot-checks of security features to ensure that the automated tests were

implemented correctly because mistakes in some security features are less likely to be caught and

reported by users than mistakes that result in erroneous outputs. For example, a user is likely to report if

a text box is not working but is not likely to identify and report that security logging is not working.

Perform Penetration Testing

Penetration testing assesses software in a manner similar to the way in which hackers look for

vulnerabilities. Penetration testing can find the widest variety of vulnerabilities and can analyze a software

package or service in the broader context of the environment it runs in, actions it performs, components it

interacts with, and ways that humans and other software interact with it. This makes it well suited to

finding business logic vulnerabilities. Skilled penetration testers can find vulnerabilities not only with direct

observation, but also based on small clues and inferences. Using their experience testing both their

current projects, and from all previous engagements, they also learn and adapt and are thus inherently

more capable than the current state of automated testing.

However, penetration testing is the most laborious and time-consuming form of security testing, requires

specialized expertise, scales poorly and is challenging to quantify and measure. Large development

organizations may staff their own penetration test team but many organizations engage other companies

to perform penetration testing (even companies with their own testers on staff may seek consultants to

test highly specialized scenarios if those scenarios are outside the expertise of their staff testers).

Whether using staff or consultant testers, it is appropriate to prioritize penetration testing of especially

security-critical functions or components. Also, given the expense and limited availability of highly skilled

penetration testers, performing penetration testing tends to be most suitable after other, less expensive

forms of security testing are completed. The time a penetration tester would spend documenting findings

that other testing methodologies can uncover is time that the penetration tester is not using to find issues

that only penetration testing is likely to uncover.

Verification

The existence of security testing can be verified by evaluating:

• Documented business risks or compliance requirements that provide prioritization for all testing

activities (failed or missed test cases should be evaluated against these)

• Mitigating controls to identified threats, misuse (abuse) cases, or attacker stories as requirements

• Security test case descriptions

• Security test results

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 26

• Penetration testing or security assessment reports

Resources

• Exploiting Software; Hoglund and McGraw; Addison-Wesley, 2004

• The Art of Software Security Testing: Identifying Software Security Flaws; Wysopal, Nelson, Dai

Zovi and Dusti; Addison-Wesley, 2006

• Open Source Security Testing Methodology Manual; ISECOM; http://www.isecom.org/

• Common Attack Pattern Enumeration and Classification; MITRE; http://capec.mitre.org/

• Software Security; Chapter 6, Software Penetration Testing; McGraw; Addison-Wesley, 2006

http://www.isecom.org/
http://capec.mitre.org/

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 27

Manage Security Findings
One of the primary goals of an SDL program is to identify software design or implementation weaknesses

that when exploited expose the application, environment or company to a level of risk.

Performing the secure development practices outlined in this document will aid in identifying these

weaknesses. However, simply performing these activities is not sufficient. Action should be taken to

correct the identified weaknesses to improve the overall security posture of the product.

Practices such as threat modeling, third-party component identification, SAST, DAST, penetration testing,

etc. all result in artifacts that contain findings related to the product’s security (or lack thereof). The

findings from these artifacts must be tracked and action taken to remediate, mitigate or accept the

respective risk. For a finding to be remediated, the risk is completely eliminated, and to be mitigated, the

risk is reduced but not completely eliminated. When the issue cannot be completely remediated, an

assessment must be performed to determine whether the residual risk is acceptable. Residual risk may

be radically different between products, depending on the products' usage and the sensitivity of data

being processed or stored, and other factors such as brand damage, and revenue impact should also be

considered. Once the residual risk is understood, a decision must be made whether the risk is

acceptable, whether additional mitigations are required, or whether the issue must be fully remediated.

To ensure that action is taken, these findings should be recorded in a tracking (ideally an ADLM) system

and made available to multiple teams in the organization. Teams who may need access to this

information to make informed decisions regarding risk acceptance and product release include the

development or operational teams who will remediate or mitigate the risk and the security team who will

review and provide guidance to both development teams and the business owners. To enable easy

discovery of these findings, they should also be identified as security issues, and to aid prioritization they

should have a severity assigned. The tracking system should have the ability to produce a report of all

unresolved (and resolved) security findings.

Define Severity

Clear definitions of severity are important to ensure that all SDL participants use the same language and

have a consistent understanding of the security issue and its potential impact. To support this

understanding, it is recommended to define criteria to categorize issues’ severity. First consider

implementing a severity scale (e.g., Critical, High, Medium and Low or a finer grained scale, Very High,

High, Medium, Low, Very Low, Informational), and next define the criteria that contribute to each severity

category. If detailed criteria are not available or known, a possible starting point is mapping severity levels

to Common Vulnerability Scoring System (CVSS) thresholds (e.g., 10-8.5 = Critical, 8.4-7.0 = High, etc.).

CVSS is primarily used for confirmed vulnerabilities but can also be used to prioritize SDL findings based

on their complexity of exploitation and impact on the security properties of a system. Evangelizing the

severity scale and definitions across the organization helps to ensure that everyone is speaking the same

language when discussing security findings.

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 28

Risk Acceptance Process

When an issue cannot be completely resolved or fully mitigated, or can be only partially mitigated, a risk

approval or mitigation request should be approved before the product is released. It is advisable to

anticipate these situations ahead of time, create a structured format to communicate them and define

process or workflow, including responsibilities of the roles involved. Ideally, the format and process will be

instantiated in the ADLM system in use. There should be clear delineation of who submits, reviews and

approves these requests. It is equally important to ensure that appropriately empowered individuals are

assigned the responsibility to accept or reject risk. This should vary by the residual risk; e.g., Critical Risk

to VP of Business Unit, Medium Risk to Engineering Manager.

A goal of the structured format is to drive consistency and help all involved consider critical factors when

making a decision that affects residual risk. An example structure used by a SAFECode member is

TSRV: Technique (T) captures the type of mitigation in effect using MITRE’s Monster Mitigations,

Specifics (S) documents the specific compensating control in effect, Remaining Risk (R) outlines the risk

that the mitigation does not address, and Verification (V) explains how the mitigation’s effectiveness was

verified.

Acceptance of risk must be tracked and archived. The record of risk acceptance should include a severity

rating, a remediation plan or expiration or re-review period for the exception and the area for re-

review/validation (e.g., a function in code should be re-reviewed to ensure that it continues to sufficiently

reduce the risk). In some cases, to ensure that required mitigating controls outside the application are

implemented, it may be necessary to produce documentation, such as a Security Configuration Guide.

http://cwe.mitre.org/top25/mitigations.html

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 29

Vulnerability Response and Disclosure
Despite the best efforts of software development teams, vulnerabilities may still exist in released software

that may be exploited to compromise the software or the data it processes. Therefore, it is necessary to

have a vulnerability response and disclosure process to help drive the resolution of externally discovered

vulnerabilities and to keep all stakeholders informed of progress. This is particularly important when a

vulnerability is being publicly disclosed and/or actively exploited. The goal of the process is to provide

customers with timely information, guidance and, where possible, mitigations or updates to address

threats resulting from such vulnerabilities.

There are two ISO standards that provide detailed guidance on how to implement vulnerability response

and disclosure processes within an organization. SAFECode members encourage others to use these

industry-proven standards to the extent possible.

• ISO/IEC 29147 – Vulnerability disclosure (available as a free download). Provides a guideline on

receiving information about potential vulnerabilities from external individuals or organizations and

distributing vulnerability resolution information to affected customers

• ISO/IEC 30111 – Vulnerability handling processes (requires a fee to download). Gives guidance

on how to internally process and resolve reports of potential vulnerabilities within an organization

Define Internal and External Policies

It is important to define and maintain a vulnerability response policy to state your company’s intentions

when investigating and remediating externally reported vulnerabilities. Typically, a vulnerability response

and disclosure policy should consider guidelines for vulnerability response internal to your company and

publicly or external to your company. The disclosure process will likely be different in the case when a

vulnerability has been disclosed privately and in the case when the vulnerability has been publicly

disclosed and/or actively exploited, and each scenario should be clearly defined and documented in the

response policy.

Internal policy defines who is responsible in each stage of the vulnerability handling process and how

they should handle information on potential and confirmed vulnerabilities.

External or public policy is primarily intended for external stakeholders, including vulnerability reporters or

security researchers who report vulnerabilities, customers and potentially press or media contacts. The

external policy sets expectations with external stakeholders about what they can expect when a potential

vulnerability is found.

Define Roles and Responsibilities

Large organizations often establish dedicated Product Security Incident Response Teams (PSIRT) or

incident response teams whose charter is to define and manage the vulnerability response and disclosure

process. Smaller organizations will need to scale the size of this effort appropriately based on the

size/scale of products and number of incidents. While the PSIRT members should understand all

policies, guidelines and activities related to Vulnerability Response and Disclosure and be able to guide

the software development team through the process, everyone involved in software development at the

https://www.iso.org/standard/45170.html
https://www.iso.org/standard/53231.html

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 30

organization and supporting functions such as customer service, legal, and public relations should

understand their role and responsibilities as they relate to Vulnerability Response & Disclosure Process.

Roles and responsibilities of each stakeholder should be clearly documented in the internal vulnerability

response policy.

The PSIRT Services Framework from FIRST (The Forum of Incident Response and Security Teams)

provides good overview of the services covered by a PSIRT.

Ensure that Vulnerability Reporters Know Whom to Contact

To help facilitate the correct response to a potential security vulnerability, it is important that vulnerability

reporters or security researchers, customers or other stakeholders know where, how, or to whom to report

the vulnerability. Ideally, this contact or report intake location is easily discoverable; for example, on a

company website. If you have a reporting process for researchers that is different from the process for

customers, such information should be clearly called out.

Since information about vulnerabilities may be used to attack vulnerable products, sensitive vulnerability

information should be communicated confidentially where possible. Secure communication methods such

as encrypted email addresses and public keys should be clearly documented within the internal and

external vulnerability response policies.

Manage Vulnerability Reporters

Vulnerabilities will be reported by vulnerability reporters (or security researchers) and by customers, and

receipt of reports should be acknowledged by the PSIRT in a timely manner. At the time of receipt, an

expectation of how the organization will respond should be set and if necessary, a request for additional

information (to support triage) from the reporter should be made.

While the reported vulnerability is being investigated, a best practice amongst SAFECode members is to

keep in contact with the reporter with the latest status so that they know you are taking the report

seriously. Otherwise, they may publicize their findings before the vulnerability is addressed. ISO/IEC

29147 – Vulnerability disclosure provides more detailed guidance on this topic.

Monitor and Manage Third-party Component Vulnerabilities

Almost all organizations will use third-party components (TPCs) in software development. These TPCs

include both open-source software (OSS) and commercial off-the-shelf (COTS) components, and

development organizations inherit the security vulnerabilities of the components they incorporate. It is

critical for organizations to have a process to monitor and manage vulnerabilities that are discovered in

such components. See SAFECode's “Managing Security Risks Inherent in the Use of Third-Party

Components” for more detailed guidance on this topic.

https://www.first.org/education/service-framework
https://www.iso.org/standard/45170.html
https://www.iso.org/standard/45170.html
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 31

Fix the Vulnerability

The reported vulnerability should be immediately triaged by the team that owns the vulnerable code for

validation and remediation, if appropriate. The severity of the vulnerability should be determined (see

Manage Security Findings) to assist in prioritizing the fixes. Other considerations may help to determine

the relative urgency of producing the fix, such as potential impact, likelihood of exploitation, and the scope

of affected customers. Other factors that may affect response timelines are the component that is affected

(for example, some components require longer QA cycles or can only be updated in a major release), and

where the product is in the development cycle when the vulnerability is discovered. If a predictable

schedule is used for releasing security updates, the details should be documented in the external

vulnerability response policy to set expectations.

In addition to fixing the reported issue, the software development team should consider the nature of the

defect. If it is likely that there are additional defects of the same class in the codebase, then it is a better

to address the defect in those places as well as the one reported. Being proactive and systematic in

mitigation helps avoid repeated submissions of the same vulnerability in other areas of the codebase. If

the team develops software that is reused by other teams, then dependent teams need to be notified, and

should update their software accordingly.

Identify Mitigating Factors or Workarounds

Security fixes should be fully tested by the software development team. Additionally, where possible,

mitigating factors or workarounds, such as settings, configuration options, or general best practices, that

could reduce the severity of exploitation of a vulnerability should be identified and tested by the

development team. These mitigations and workarounds help users of the affected software defend

against exploitation of the vulnerability before they are able to deploy any updates.

Vulnerability Disclosure

When available, the fix should be communicated to customers through security advisories, bulletins, or

similar notification methods. Security advisories and bulletins should be released only once fixes are in

place for all supported versions of the affected product(s).

Typically, advance notification is not provided to individual customers. This ensures that all customers are

not exposed to malicious attacks while the fix is being developed and receive the correct information to

remediate the vulnerability once the fix is available.

The disclosure process will be different when the vulnerability is being publicly disclosed and/or actively

exploited: in this case, it may be desirable to release a public security advisory before a fix for the

vulnerability is ready for release. Make sure this aspect of the process is clearly defined and documented

in the internal vulnerability response policy.

Certain vulnerabilities may require multi-party coordination before they are publicly disclosed. Please see

“Guidelines and Practices for Multi-Party Vulnerability Coordination and Disclosure“ from FIRST for

guidance and best practices for such cases.

https://www.first.org/global/sigs/vulnerability-coordination/multiparty/

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 32

Security advisories and bulletins must strike a balance between providing sufficient details so that

customers can protect themselves and being so detailed that malicious parties could take advantage of

the information in the advisory or bulletin and exploit it to the detriment of customers.

Security Advisories and Bulletins will typically include the following information where applicable:

• Products, applicable versions and platforms affected

• The severity rating/level for the vulnerability (see Manage Security Findings)

• Common Vulnerability Enumeration (CVE: http://cve.mitre.org) identifier for the vulnerability so

that the information on the vulnerability can be shared across various vulnerability management

capabilities (e.g., vulnerability scanners, repositories, and services)

• Brief description of the vulnerability and potential impact if exploited

• Fix details with update/workaround information

• Credit to the reporter for discovering the vulnerability and working on a coordinated disclosure (if

applicable)

ISO/IEC 29147 -- Vulnerability disclosure provides guidance for security advisories and bulletins in more

detail.

Secure Development Lifecycle Feedback

To prevent similar vulnerabilities from occurring in new or updated products, perform a root cause

analysis and update the secure development lifecycle using information gained from the root cause

analysis and during the remediation process. This feedback loop is a critical step for continuous

improvement of the SDL program.

Resources

• Common Vulnerability Scoring System (CVSS) (https://www.first.org/cvss/): the industry standard

vulnerability severity scoring system.

• Common Vulnerability Enumeration (CVE: http://cve.mitre.org): industry standard for uniquely

identifying vulnerabilities to facilitate sharing information across vulnerability management tools

such as vulnerability scanners, repositories and services.

• Forum of Incident Response and Security Teams (FIRST) (www.first.org): FIRST is an industry

forum dedicated to best practices in incident response. FIRST has a variety of publications

regarding best practices and training for incident response.

• CERT (http://cert.org/): A division of the Software Engineering Institute (SEI) that studies and

solves problems with widespread cybersecurity implications.

• OWASP (https://www.owasp.org/index.php/SAMM_-_Vulnerability_Management_-_1): OWASP

has a lightweight vulnerability response guide.

http://cve.mitre.org/
https://www.iso.org/standard/45170.html
https://www.first.org/cvss/
http://cve.mitre.org/
http://www.first.org/
http://cert.org/
https://www.owasp.org/index.php/SAMM_-_Vulnerability_Management_-_1

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 33

Planning the Implementation and Deployment of
Secure Development Practices
An organization’s collection of secure development practices is commonly referred to as a Secure

Development Lifecycle or SDL. While the set of secure development practices described previously in this

paper are essential components of an SDL, they are not the only elements of a mature SDL. A healthy

SDL includes all the aspects of a healthy business process, including program management, stakeholder

management, deployment planning, metrics and indicators, and a plan for continuous improvement.

Whether defining a new set of secure development practices or evolving existing secure development

practices, there is a variety of factors to consider that may aid or impede the definition, adoption and

success of the secure development program overall. Below are some items to consider in planning the

implementation and adoption of an SDL:

• Culture of the organization

• Expertise and skill level of the organization

• Product development model and lifecycle

• Scope of the initial deployment

• Stakeholder management and communication

• Efficiency measurement

• SDL process health

• Value proposition for the secure development practices

Culture of the Organization

The culture of the organization must be considered when planning the deployment of any new process or

set of application security controls. Some organizations respond well to corporate mandates from the

CEO or upper management, while others respond better to a groundswell from the engineering team.

Think about the culture of the organization that must adopt these practices. Look to the past for examples

of process or requirements changes that were successful and those that were not. Learn from past

successes and mistakes. If mandates work well, identify the key managers who need to support and

communicate a software security initiative. If a groundswell is more effective, think about highly influential

engineering teams or leaders to engage in a pilot and be the first adopters.

Expertise and Skill Level of the Organization

If an organization is to be successful in implementing an SDL, some level of training is necessary. The

entire organization should be made aware of the importance of security, and more detailed technical

training must be provided to development teams that clearly articulates the specific expectations of

individuals and teams. If individuals do not understand why these practices are important and the impact

of not performing these practices, they are less likely to support them. Additional training will likely be

needed, depending on the expertise in the organization. For each of the secure development practices,

consider the expertise/skill level needed and the coverage of that expertise in the organization. For

example, the Secure Design Principles practice requires threat modeling expertise and possibly

cryptography expertise. Does the organization have any resident experts in these areas? Is the number of

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 34

experts sufficient? Can these experts assist with training and establishing the expertise within the

organization? SAFECode (https://training.safecode.org/) has a series of free, publicly available training

courses to assist with establishing and building this expertise.

Product Development Model and Lifecycle

Along with a specification of the secure development practices, it is essential to consider when the

practices are required. When or how often a practice is applied is highly dependent on the development

model in use and the automation available. Although security practices executed in sequential and

logical order can result in greater security gains (e.g., threat model before code is committed) and cost

effectiveness than ad hoc implementation, in agile or continuous development environments, other

triggers such as time (e.g., conduct DAST monthly) or response to operating environment changes (e.g.,

deployment of a new service or dataset) should be considered.

Not everyone is nor needs to be a security engineer, and the SDL framework should provide engineers

with clear actionable guidance, supported by efficient processes, carefully selected tools and intelligent

automation, tightly aligned with the engineering experience. To facilitate change at scale, security process

and tools must be integrated into the engineers’ world and not exist as a separate security world, which is

often seen as a compliance function. This not only helps to reduce friction with engineers, it also enables

them to move faster by integrating security tools into the world in which they live and operate.

SDL framework for all development models

The SDL framework should include guidance as to when a secure development practice applies and

when it must be complete. This guidance must map to the development model and terminology used by

development teams.

Scope of Initial Deployment

Often, the teams implementing the secure development program are resource constrained and may need

to consider different ways to prioritize the rollout across the organization. There are many ways to

manage the rollout of the SDL. Having a good understanding of how the project planning process works

https://training.safecode.org/

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 35

and the culture of the organization will help the secure development program manager make wise

choices for the implementation and adoption of secure development practices. Below are some options to

consider:

• Will the initial rollout include all secure development practices or a subset? Depending on the

maturity of the organization, it may be wise to start with a subset of the secure development

practices and establish traction and expertise in those areas prior to full-scale implementation of

all of the practices.

• Consider the product release roadmap and select an adoption period for each team that allows

them time to plan for the adoption of the new process. It may be unwise to try to introduce a new

process and set of practices to a team nearing completion of a specific release. The team is

probably marching towards a tight timeline and has not included in its schedule the time to learn

and adopt a new process or set of security requirements.

• The initial rollout might also choose to target teams with products of higher security risk posture

and defer lower risk products for a later start.

• Consider allowing time for transition to full adherence to all SDL requirements. For example, an

existing product whose development team is working on a new release may have an architecture

whose threat model reveals vulnerabilities that are both very serious and very difficult to mitigate.

It may make sense to agree with such a product team that they will “do what is feasible now” and

transition to a new architecture over an agreed period of time.

Stakeholder Management and Communications

Deploying a new process or set of practices often requires the commitment and support of many

stakeholders. Identify the stakeholders, champions and change agents who will be needed to assist with

the communications, influencing and roll-out of the program. Visit these stakeholders with a roadshow

that clearly explains the value and commitment to secure development practices and what specifically

they are being asked to do.

Compliance Measurement

In implementing a new set of security requirements, the organization must consider what is mandatory

and what (if anything) is optional. Most organizations have a governance or risk/controls function that will

require indicators of compliance with required practices. In defining the overall SDL program, consider the

following:

• Are teams required to complete all of the secure development practices? What is truly

mandatory? Is there a target for compliance?

• What evidence of practice execution is required? Ideally, the ADLM system and testing

environments can be configured to produce this evidence "for free” as a side-effect of executing

the secure development process.

• How will compliance be measured? What types of reports are needed?

• What happens if the compliance target is not achieved? What is the risk management process

that should be followed? What level of management can sign off on a decision to ship with open

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 36

exceptions to security requirements? What action plans will be required to mitigate such risks and

how will their implementation be tracked?

SDL Process Health

A good set of secure development practices is constantly evolving, just as the threats and technologies

involved are constantly evolving. The SDL process must identify key feedback mechanisms for identifying

gaps and improvements needed. The vulnerability management process is a good source of feedback

about the effectiveness of the secure development practices. If a vulnerability is discovered post-release,

root-cause analysis should be performed. The root cause may be:

• A gap in the secure development practices that needs to be filled

• A gap in training/skills

• The need for a new tool or an update to an existing tool

In addition, development teams will have opinions regarding what is working and what is not. The

opinions of development teams should be sought, as they may help identify inefficiencies or gaps that

should be addressed. Industry reports regarding trends and shifts in secure development practices should

be monitored and considered. A mature SDL has a plan and metrics for monitoring the state of secure

development practices across the industry and the health of the organization’s secure development

practices.

Value Proposition

There will be times when the funding for secure development practices support will be questioned by

engineering teams and/or management. A mature secure development program will have good metrics or

indicators to articulate the value of the secure development practices to drive the right decisions and

behaviors. Software security is a very difficult area to measure and portray. Some common metrics can

include industry cost-of-quality models, where the cost of fixing a vulnerability discovered post-release

with customer exposure/damage is compared to that of finding/fixing a vulnerability early in the

development lifecycle via a secure development practice. Other metrics include severity and exploitability

of externally discovered vulnerabilities (CVSS score trends) and even the cost of product exploits on the

“grey market.” There is no perfect answer here, but it is a critical aspect of a secure development program

to ensure that the value proposition is characterized, understood and can be articulated in a way that the

business understands.

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 37

Moving Industry Forward
One of the more striking aspects of SAFECode’s work in creating this paper was an opportunity to review

the evolution of software security practices and resources in the seven years since the second edition

was published. Though much of the advancement is a result of innovation happening internally within

individual software companies, SAFECode believes that an increase in industry collaboration has

amplified these efforts and contributed positively to advancing the state of the art across the industry.

To continue this positive trend, SAFECode encourages other software providers not only to consider,

tailor and adopt the practices outlined in this paper, but also to continue to contribute to a broad industry

dialogue on advancing secure software development. For its part, SAFECode will continue to review and

update the practices in this paper based on the experiences of our members and the feedback from the

industry and other experts. To this end, we encourage your comments and contributions, especially to the

newly added work on verification methods. To comment on this paper, please write to

feedback@safecode.org. To contribute, please visit www.safecode.org.

Acknowledgements

Authors

• Tony Rice, Microsoft

• Josh Brown-White, Microsoft

• Tania Skinner, Intel

• Nick Ozmore, Veracode

• Nazira Carlage, Dell EMC

• Wendy Poland, Adobe

• Eric Heitzman, Security Compass

• Danny Dhillon, Dell EMC

Contributors

• Edward Bonver, Symantec

• Anders Magnusson, CA Technologies

• Dermot Connell, Symantec

• Ravindra Rajaram, CA Technologies

• Jim Manico, Manicode Security

• John Martin, Boeing

• Manuel Ifland, Siemens

• Prithvi Bisht, Adobe

• Steve Lipner, SAFECode

Reviewers

• Linda Criddle, Intel

• Peter Chestna, CA Technologies

• Dave Lewis, Symantec

• Martin Baur, Siemens

• Sandro Kaden, Siemens

• Izar Tarandach, Autodesk

mailto:feedback@safecode.org
http://www.safecode.org/

 Fundamental Practices for Secure Software Development

© 2018 SAFECode – All Rights Reserved. 38

About SAFECode

The Software Assurance Forum for Excellence in Code (SAFECode) is a non-profit organization

exclusively dedicated to increasing trust in information and communications technology products and

services through the advancement of effective software assurance methods. SAFECode is a global,

industry-led effort to identify and promote best practices for developing and delivering more secure and

reliable software, hardware and services. Its charter members include Adobe Systems Incorporated, CA

Technologies, EMC Corp., Intel Corp., Microsoft Corp., Symantec Corp. and Siemens. Associate

members include Autodesk, Boeing, Cigital, Huawei, NetApp, Security Compass, Synopsis, Veracode

and VMWare. For more information, please visit www.safecode.org.

Product and service names mentioned herein are the trademarks of their respective owners.

SAFECode ©2008-2018 Software Assurance Forum for Excellence in Code (SAFECode).

http://www.safecode.org/

