

© 2017 SAFECode – All Rights Reserved.

Managing Security

Risks Inherent in

the Use of Third-

party Components

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 2

Table of Contents

1 Introduction ... 4

1.1 Methodology and Scope ... 4

2 Challenges in Using Third-party Components ... 5

2.1 Example Use Case ... 5

2.2 What TPCs Are Included in a Product? .. 6

2.2.1 Naming of Components ... 7

2.2.2 Dependencies .. 7

2.3 Is the Product Affected by the Vulnerable Third-party Component? .. 8

2.3.1 Naming of Components ... 9

2.3.2 Dependencies .. 9

2.3.3 CVE Reports .. 9

2.4 What TPCs Should We Use and What Are the Security Risks Associated with Them? 9

2.5 What Should We Do To Maintain the TPCs Within Our Product? ... 10

3 Managing Third-party Components .. 11

3.1 Overview of the Third-party Component Management Life Cycle ... 11

3.1.1 TPC Life Cycle and Software Development Life Cycle ... 12

3.2 Key Ingredients of a TPC Management Process ... 14

3.2.1 Maintain List of TPCs (MAINTAIN) .. 15

3.2.2 Assess Security Risk (ASSESS) ... 19

3.2.3 Mitigate or Accept Risk (MITIGATE) ... 22

3.2.4 Monitor for TPC Changes (MONITOR) ... 23

3.3 Closing the Example Use Case .. 25

3.3.1 Selecting TPCs .. 25

3.3.2 Monitoring TPCs .. 25

3.3.3 Responding to New Vulnerabilities.. 25

3.3.4 Maintaining the TPCs in the Product ... 26

4 Future Considerations .. 27

4.1 Crowdsourcing of Naming and Name Mapping .. 27

4.2 Crowdsourcing of an End-of-life Repository ... 27

4.3 Crowdsourcing of a Vulnerability Source Listing .. 27

5 Summary .. 28

5.1 Acknowledgements... 28

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 3

5.1.1 Contributors ... 28

5.1.2 Reviewers .. 28

5.2 About SAFECode ... 29

6 Appendix .. 30

6.1 TPC Provider’s Security Mindedness/Posture Assessment ... 30

6.2 Related Work .. 30

6.2.1 Identification of Third-party Components and Dependency Management 30

6.2.2 Vulnerability Databases ... 31

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 4

1 Introduction
Usage of third-party components (TPCs) has become the de-facto standard in software development.

These TPCs include both open-source software (OSS) and commercial off-the-shelf (COTS) components.

According to a survey by Black Duck software1, “78 percent of respondents said their companies run part

or all of its operations on OSS and 66 percent said their company creates software for customers built on

open-source. This statistic has nearly doubled since 2010 […].”

TPCs, used as pre-made building blocks, enable faster time to market and lower development costs by

providing out-of-the box functionality of common functions, allowing developers to focus on product-

specific customizations and features. While these TPCs are often treated as black boxes and are less

scrutinized than comparable internally developed components, they are not without risk. Users inherit the

security vulnerabilities of the components they incorporate. Historically, the selection and usage of TPCs

has been an engineering decision, purely based on functionality. Given the increasing trend in usage of

third-party components, security must be a consideration in the selection and usage of TPCs2.

The number of vulnerabilities reported against TPCs, both OSS and proprietary COTS software, should

serve as a strong testament that managing security risks due to the use of third-party components is an

important duty for their users. Some good examples include Heartbleed (CVE-2014-01603), which was

disclosed in 2014, and more recently, a security flaw in the GNU C Library (CVE-2015-75474) that was

discovered by researchers in 2015. These vulnerabilities triggered analysis and remediation activities on

an unprecedented scale that sent the software industry into a “patching frenzy.”

To attackers, the fact that TPCs are widely used in software development is an introduction and invitation

to an unexplored land of opportunities. The current state of uncontrolled TPC usage must be replaced by

a disciplined analysis and consideration of security risk.

Disclaimer: This white paper focuses only on security risks inherent in the use of third-party

components. Any other risks such as legal or regulatory risks, intellectual property, business

risks, OSS vs. COTS quality or due diligence are out of scope for this white paper.

1.1 Methodology and Scope

The supply chain of components in software development is extremely varied and complex. There are

many different use cases and considerations for TPCs, and there are several open-source and

commercial tools offering capabilities to assist with the management of TPCs (see section 6.2). This white

paper is the culmination of a yearlong research project within SAFECode that included surveys and

industry research to identify best practices in TPC management. At the time of this research, no single

body of work comprehensively addressed the issues with the usage of TPCs in product development.

This white paper provides a blueprint for how to identify, assess and manage the security risks associated

with the use of third-party components. The white paper helps to understand these security risks and

1 https://www.blackducksoftware.com/about/news-events/releases/seventy-eight-percent-of-companies-run-on-open-source-yet-
many-lack-formal-policies-to-manage-legal-operational-and-security-risk
2 https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
3 https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
4 https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-7547

https://www.blackducksoftware.com/about/news-events/releases/seventy-eight-percent-of-companies-run-on-open-source-yet-many-lack-formal-policies-to-manage-legal-operational-and-security-risk
https://www.blackducksoftware.com/about/news-events/releases/seventy-eight-percent-of-companies-run-on-open-source-yet-many-lack-formal-policies-to-manage-legal-operational-and-security-risk
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-7547

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 5

provides recommendations to help manage them. Through this white paper, SAFECode aims to share

our collective knowledge regarding the challenges and recommended solutions for dealing with TPCs.

The SAFECode publication “Principles for Software Assurance Assessment”5 more broadly addresses

software security assurance of commercial technology providers and thus includes use cases that are

different from the one in this white paper. The table below summarizes these use cases, clarifying which

paper covers which use case.

Use Case Publication

An organization is evaluating/acquiring COTS
software applications to install/use within a corporate
network or environment. This is often done through a
procurement process.

“Principles for Software Assurance
Assessment”5

An organization is evaluating/acquiring open-source
software applications to install/use within a corporate
network. This is often done through a procurement
process.

“An Assurance-Based Approach to Minimizing
Risks in the Software Supply Chain”6

A development team in an organization is selecting
or using open-source or COTS components for
inclusion in products.

This white paper

An organization is contracting out custom
development of a component or product.

Not in scope

For trainings on this and other topics, please refer to https://training.safecode.org.

2 Challenges in Using Third-party
Components

This section introduces the importance of a well-established third-party component management life cycle

by taking an example use case from the life of Bob, a software developer. This example use case

highlights challenges faced by Bob in the absence of a TPC management life cycle which are discussed

further in the rest of this section. Recommended solutions for managing third-party components that

address these challenges are discussed in section 3.

2.1 Example Use Case

Bob’s team is developing a product that incorporates a variety of third-party components (TPCs) to

provide functionality the product needs. Bob’s company does not have any requirements or restrictions on

using third-party components. The integration of TPCs is quickly completed and the product is released

and sold to customers. Not long after the production release, the internet is abuzz with reports of a new

critical security vulnerability. The vulnerability was discovered in an open-source component and has

5 http://www.safecode.org/publication/SAFECode_Principles_for_Software_Assurance_Assessment.pdf
6 http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf

https://training.safecode.org/
http://www.safecode.org/publication/SAFECode_Principles_for_Software_Assurance_Assessment.pdf
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 6

been assigned an official Common Vulnerabilities and Exposures (CVE) number by the MITRE

Corporation7. Bob’s teammate Juanita forwards the CVE to Bob and asks him whether his product is

affected. Bob encounters his first problem: “What third-party components are included in my

product?”

Bob mines his product documentation and code to attempt to determine what TPCs are included/used in

the product. After much effort, a list of TPCs is generated. Now Bob encounters his next problem: “Is the

product affected by the CVE?” The CVE lists the affected component as “Strawberry Lane” version 3.4.

Bob’s list of components does not contain Strawberry Lane version 3.4 but it does include StrwLn version

3.4. Bob wonders whether this is the same component. He does additional research and determines that

it is, in fact, the same component, despite the different name. Bob must also evaluate whether or not the

product uses the specific TPC functionality that is vulnerable. After extensive design and code reviews,

Bob determines that the product is affected.

While Bob is evaluating the impact of the vulnerability, the product is compromised by attackers who

succeed in accessing the data stored in the database server. Root cause analysis points to a serious

vulnerability in a different TPC that has been known publicly for many years. Fixing these issues while in

production results in financial loss, service outage, reputational exposure and decrease in customers'

faith. Bob's company is responsible for any vulnerabilities in the product even though the vulnerability is in

a third-party component and not the custom code that Bob added. Bob’s team struggles with the

question, “What should we do to maintain the TPCs within our product?”

The Quality Assurance & Product Security Incident Response teams at Bob's company insist on a full bill

of materials (BOM) to identify all TPCs in the product and to make sure that other components are not

vulnerable. During this analysis, Bob discovers that the internal product documentation only lists a few

TPCs being used. His further analysis reveals that one of the TPCs in use actually depends on other

TPCs internally. Frustrated, he realizes quickly that he does not know which TPCs are actually used by

his product. The manual process of TPC discovery becomes labor-intensive, time-consuming and error-

prone. Once the list of TPCs is ready, Bob now realizes that a few of these TPCs have reached end of life

(EOL) and are therefore no longer supported. Further, he finds that these end-of-life components have

unpatched security vulnerabilities that cannot be fixed because the vendors no longer support these

components. The organization is now attempting to understand, “What TPCs should we use and what

is the security risk associated with them?”

This entire painful and costly experience has left Bob’s company wondering, “How should we manage

TPCs overall?”

While this scenario focused on one particular product, in reality an organization may have tens, hundreds

or thousands of products with code of varying age and complexity and a massive number of distinct

TPCs. How to identify, assess, maintain and manage TPCs overall is a critical challenge facing software

development organizations today.

2.2 What TPCs Are Included in a Product?

One of the challenges associated with using third-party components is their discoverability, along with

establishing and maintaining the product bill of materials (BOM). There are automated solutions and tools

7 https://cve.mitre.org/

https://cve.mitre.org/

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 7

available that identify included third-party components and generate a BOM; however, there is not a one-

size-fits-all solution that can be used for every different scenario. A company that uses several different

programming languages and frameworks would require a tool that understands all of them in order to be

able to find all included TPCs. Without an accurate BOM, including third-party component names and

exact versions, it is very difficult to correctly and consistently identify new or existing vulnerabilities in the

TPCs used, or identify all relevant patches. In the absence of a BOM, when new security vulnerabilities

are published, organizations must scramble to identify which of their products, if any, are affected. This

can be a painstaking process for organizations that do not know what TPCs they are using.

2.2.1 Naming of Components
In order to create a product BOM covering all utilized third-party components, there must be a way to

uniquely identify each TPC. Unfortunately, a single TPC is sometimes known by multiple names, and it

can be difficult to find the correct or most commonly used name. For instance, Apache Xerces is often

short for Apache Xerces/J, which is also xercesImpl.jar. Similarly, some components with the same name

are available from different sources with different characteristics: For example, 7-zip is available for

Windows in 32-bit x86 as well as in 64-bit x64 and for Linux, too. Finally, different TPCs could be

identified by the same name, and a product may have multiple versions of a single TPC. The root cause

of this challenge is a lack of unique identifiers or names for third-party components. These naming

inconsistencies originate both outside and inside a company. Outside a company there is no standard

naming convention for TPCs, and names vary significantly across software suppliers. Inside a company,

the absence of a company-wide naming convention results in different development teams naming the

same TPC differently.

2.2.2 Dependencies
Identifying the TPCs used in a product or by an organization overall is further complicated by the

hierarchical nature of TPCs. A single TPC may use several TPC sub-components, each of those further

referencing additional TPC sub-components, and so on. An example of multi-level component

dependencies is illustrated in Figure 1 in a dependency graph of an NPM (Node Package Manager)

project that relies on the Express framework.

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 8

Figure 1: A small part of the dependency graph for the "0.0.1" NPM Module

Collecting and mapping software dependency information is often a product-team-driven effort, relying on

individual product development teams to supply dependency information from build systems, references

in source code or system architecture documentation. Individual product teams may use varying

conventions in identifying, collecting and describing their product dependencies. These partly manual

efforts are prone to error, and they produce data that is often unreliable and unusable in managing

components and component risk at a portfolio or organizational level.

Criteria for discovery of these components-of-components may differ among product teams. What defines

a component? How many levels deep should these references be followed? Who is collecting the data

and what is the collector’s background, level of understanding, and business objective? How should the

data be represented? Even when organizational standards are developed for identifying and describing

components, the standards may be unworkable, as the interpretation of these standards, and how these

standards are proceduralized, will differ wherever there is human involvement.

Heterogeneous environments present additional challenges, as TPC dependencies are incorporated

differently by language, framework and platform. Consider the import statement, often employed to use

TPCs, which varies by programming languages, such as "import" in Java, but "include" in PHP and Ruby.

Frameworks/platforms maintain the status quo: For example, maven maintains dependencies in a POM

file, whereas Bower uses a JSON file for this. A company that uses several of these languages and

frameworks then needs a tool that understands these differences to be able to find included TPCs.

2.3 Is the Product Affected by the Vulnerable Third-party

Component?

When a new security vulnerability is reported for a TPC, teams are faced with the challenge of

determining 1) whether that TPC is included in their product and 2) whether the product is affected by the

specific vulnerability. It is not uncommon for a product to utilize a component and not be affected by a

0.0.1

Express

proxy-addr

ipaddr.js

coffee-
script

forwarded

serve-
static

send

statuses mime

parseurl

path-to-
regexp

isarray

accepts

mime-
types

mime-db

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 9

particular CVE. Often, products will utilize a subset of the functionality contained in a TPC. Answering

these questions is made more difficult by the naming challenge, dependency challenge and vulnerability

documentation.

2.3.1 Naming of Components
Section 2.2.1 described the issue of TPCs not having unique identifiers and the impact this has on

determining the product BOM. This same problem makes it very difficult to match the components in the

BOM with the TPC listed on the CVE to determine whether the affected TPC is included in the product.

2.3.2 Dependencies
Section 2.2.2 described the issue of dependencies within TPCs. This same problem makes it very difficult

to determine whether the affected TPC is included in the product. If the product BOM only includes the

first or top-level set of TPCs, then vulnerabilities in nested components may go undetected for a period of

time.

2.3.3 CVE Reports
CVEs listed in the National Vulnerability Database exist in varying levels of quality and completeness.

The contents of the CVE may not be sufficient for a team to quickly determine whether or not its usage of

a component is affected. In general, a detailed analysis of the CVE and additional research may be

needed.

2.4 What TPCs Should We Use and What Are the Security

Risks Associated with Them?

Product teams and developers often select third-party components purely based on the functionality they

deliver, without considering the security, supportability and maintainability of these components. One can

save a lot of grief later on by taking security into consideration during the selection process. Some third-

party components may not have been designed or implemented with security in mind, resulting in security

risks that could affect products or services that use them. Consider the following examples of third-party

components that could carry high levels of security risk:

• A component created by a graduate student or intern, designed without any consideration of

software security. Once delivered, the component is immediately abandoned by the author and

never touched again.

• Source code made available on GitHub, but with build instructions pointing to outdated compilers,

and with a last update over four years ago

• Hobby code written by a single author as an experiment or while learning to program, left

available on the author’s personal website

While these components may deliver desired functionality, they may bring in an unacceptable level of risk

to the organization, especially if a product has been integrated into a critical business function or

infrastructure. Selecting components that were developed with security in mind rather than choosing

solely based on functionality will help lower an organization's security risk. Organizations that integrate

components should understand the challenges and implement a balanced approach to risk management.

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 10

2.5 What Should We Do To Maintain the TPCs Within Our

Product?

Maintaining used or incorporated TPCs is an important task during the entire product life cycle until the

product finally reaches end of life and end of support. Maintenance includes responding to vulnerabilities

discovered in TPCs used in the product. This task, however, is not an easy one and appropriate

preparation is required. Without having plans and a strategy to address the following issues, risks may

arise regarding:

• Keeping track of security weaknesses and vulnerabilities

• Monitoring and updating

• Unused TPCs

• TPCs reaching their end of life or end of support

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 11

3 Managing Third-party Components
Addressing the challenges associated with using third-party components requires a robust process that is

integrated into the organization's software development life cycle (SDLC). Management of TPCs should

begin as early as possible in the SDLC. Organizations should define and adopt a process for managing

the security risk of TPCs that fits into an organization's existing SDLC. Section 3.1 provides a high-level

overview of the proposed TPC management process and its relation to the software development life

cycle. Section 3.2 describes the key ingredients of a TPC management process and discusses each step

in detail. Section 3.3 revisits the use case.

3.1 Overview of the Third-party Component Management Life

Cycle

The high-level steps in TPC management are depicted in Figure 2 and described in detail below. While

Maintain, Assess, and Mitigate depend on each other, Monitor can be seen as an independent step that

is required throughout the entire third-party component life cycle.

Figure 2: The high-level steps of TPC management are Maintain, Assess, and Mitigate. The Monitor step is a central
aspect of TPC management and thus valid throughout the entire life cycle.

I) Maintain a List of TPCs

Having a list of TPCs in use or to be used is the first step in managing them. Intuitively, this is similar to

having a bill of materials, with the key difference that it should include TPCs slated for future use as well

as those in current use. For new code, this could be as simple as keeping a list of third-party components

of interest, including their versions. For legacy code, identifying the baseline set of TPCs included can be

quite challenging, particularly for large codebases. There are many ways to generate and maintain a list

of TPCs used, none of which is perfect. Section 3.2.1 explores some of the options available for

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 12

discovering and maintaining the list of TPCs. Regardless of what method is chosen, you cannot manage

what you do not know. It is imperative that organizations adopt a process and method for identifying

TPCs used.

II) Assess Security Risks from TPCs

Once a list of TPCs is available, the TPCs must be assessed to gauge risks in their use. A good and easy

starting point is determining known security vulnerabilities of a TPC and their impact on the TPC’s

intended use. This provides insight into potential issues with integrated TPCs. The risk assessment

should consider aspects that could hint at unknown security issues or impending problems in using a

TPC. These aspects should include assessing the maturity of the TPC provider, such as maintenance

cadence, stability of the TPC over time, development practices employed by the TPC provider, whether

the TPC will reach end of life within the expected lifetime of a product, etc. The outcome of this step can

be a risk score for a TPC of interest. This score could be binary -- acceptable/unacceptable -- or numeric

for more advanced TPC management programs that may allocate weights to various aspects critical to an

organization's business.

III) Mitigate or Accept Risks Arising Due to Vulnerable TPCs

With access to the risk profile for a TPC, an organization must decide whether its use is acceptable or

whether it needs mitigations. Mitigations can be done in a number of ways. The most straightforward is to

look for a newer patched version of the same TPC or an alternative TPC that has an acceptable risk

score. However, upgrading or changing TPCs may be difficult at times: the TPC in question may be

providing a unique functionality or it could have been incorporated in the legacy code already. In such

circumstances, mitigations should aim to bring down the impact of risks. For example, vulnerabilities in

TPCs could be mitigated by strict input validation/output sanitization by the embedding product or by

reducing privileges/access of code involving the TPC. This also includes hardening TPCs, such as by

disabling unused services, changing the configuration of a TPC or removing unused parts of it. In the

event that a patched version is not available, the organization using the component can submit a patch to

the managing entity or can remediate the vulnerability internally itself. There are pros and cons to each

approach.

IV) Monitor for Changes

Once a TPC is incorporated in a product, it needs continuous monitoring of different information

resources to ensure that its risk profile remains acceptable over time. Discovery of new vulnerabilities in a

TPC or the TPC reaching end of life are scenarios that may tip the TPC’s risk profile to unacceptable.

This step should leverage public resources such as the TPC provider’s website and vulnerability

databases, as well as company-level policies, such as defining when a TPC is considered to be at its end

of life.

3.1.1 TPC Life Cycle and Software Development Life Cycle
As shown in Figure 3 and Figure 4, the TPC life cycle and software development life cycle (SDLC) go

hand in hand. Both figures show the four typical phases of the SDLC -- Requirements, Design, Develop

and Support -- and that the TPC life cycle relates to them and is valid during all phases of the SDLC.

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 13

Figure 3: The TPC life cycle and the Software Development Life Cycle go hand in hand. This figure shows the
repetitive nature of the both life cycles. Figure 4 shows how individual stages in these life cycles correlate.

Figure 4: TPC life cycle steps should start early and occur at distinct points of the SDLC.

One of the most effective ways to kick off a TPC management program is to piggyback it on an already

established process, e.g., SDLC or legal review. The TPCs should be tracked starting as early as the

SDLC requirements phase, when functional requirements may dictate the use of specific TPCs (step

Maintain). The bulk of TPC selection usually happens in the design and develop phases and populates

the list of TPCs. For legacy applications without any TPC life cycle management, TPC enumeration often

starts in the support phase of the SDLC. Different parts of an application may be in any of the four SDLC

phases. Hence, maintaining this list of TPCs is a continuous process that could systematically yield a bill

of materials for the application.

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 14

The risk assessment process, step Assess, starts as soon as a candidate TPC is identified and continues

until no new TPCs are needed. If a TPC is determined to have high risk, the mitigation step includes

exploring alternatives, such as using a newer version of the TPC, using a different TPC with lower risk, or

choosing to accept the risk. In turn, this could cause the list of TPCs to change and risk assessment to

commence for the newly selected TPCs. Risk mitigation, step Mitigate, continues in the design and

develop SDLC phases, as in some cases design or code-level safeguards may be necessary to mitigate

risks of a TPC that must be used.

After risk mitigation, TPCs used (or the BOM) should be monitored for changes in risk profiles, step

Monitor, in response to newly discovered vulnerabilities or being marked EOL by the TPC provider. This

step also triggers risk assessment if new or updated TPCs are added to the BOM. This monitoring could

kick off risk assessment and a hunt for a new TPC version/alternative.

An important step of the TPC life cycle is to verify and confirm the bill of materials before a product is

shipped to customers and enters the support phase (“Verify BOM” in Figure 4). This ensures that no

TPCs were missed during the develop phase and that the BOM reflects reality. This verification entails

the use of manual/semi-automated means (some tools are listed in Table 2) to find TPCs in use and

compare them against the manually created BOM from previous phases.

3.2 Key Ingredients of a TPC Management Process

The overall TPC life cycle management steps, including the four high-level steps Maintain, Assess,

Mitigate and Monitor (red boxes), are depicted in Figure 5. These four main TPC life cycle management

steps have already been discussed in section 3.1. The key ingredients (green boxes) of each main TPC

life cycle step are also shown in Figure 5 and further discussed in this section. Green boxes with stars are

considered the bare minimum for a meaningful TPC life cycle management and thus at least these steps

should be covered by a quick starter TPC management process.

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 15

Figure 5: This chart depicts all TPC life cycle management steps of the TPC management process. Green boxes with
stars are considered the bare minimum.

3.2.1 Maintain List of TPCs (MAINTAIN)
MAINTAIN1: Define a Unique Identifier. Defining a unique identifier primarily addresses the naming

challenge described in section 2.2.1 and helps in the creation and maintenance of a BOM. Naming issues

with third-party components should be approached in two different ways: (1) defining a unique identifier

for company-wide adoption, and (2) mapping components to their appropriate identifiers.

In order to be able to assign identifiers to third-party components without collisions, a unique identifier

solution has to be defined as the basis. For instance, such an identifier can be a simple integer value, a

globally unique identifier (GUID) as used in computer software, or an existing naming standard or

convention. Another key consideration in deciding upon this identifier should be its compatibility with other

naming standards, in order to use the identifiers for querying different internal or external databases and

in case a need arises to convert TPCs to a standard specified naming scheme. Homebrewed solutions

that rely on a single identifier used only internally should be employed with caution, as these might

complicate the compatibility of TPC names with other standards. For a company-wide approach, project-

specific names should be disallowed in favor of using names that are valid across the company.

TPC Life Cycle
Management

Maintain List of
TPCs

Define a Unique
Identifier

Map Component
Names

Create Bill of
Materials

Assess Security
Risk

Assess Known
Vulnerabilities &

Practices

Evaluate
Component's

Operational Risk

Mitigate or
Accept Risk

Patch/Update
Version

Replace with
Equivalent

Branch Code
Internally

Contribute to
Community/

Vendor

Mitigate Through
Code

Accept Risk

Monitor for
Changes

Respond to New
Vulnerabilities

Monitor for EOL

Communicate
Risk Profile
Changes

Respond to
Policy Changes

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 16

The following are some standards and conventions that are worthy of mention:

• Common Platform Enumeration (CPE) provides a standard machine-readable format for

encoding names of IT products and platforms (https://cpe.mitre.org/about/).

• ISO/IEC 19770-2:2009 establishes specifications for tagging software to optimize its identification

and management (http://www.iso.org/iso/catalogue_detail.htm?csnumber=53670).

• The Software Package Data Exchange (SPDX) specification is a standard format for

communicating the components, licenses and copyrights associated with a software package

(http://spdx.org/).

• Software Identification (SWID) Tags record unique information about an installed software

application, including its name, edition, version, whether it is part of a bundle and more

(http://tagvault.org/swid-tags/).

• The FS-ISAC working group recommends a naming convention8 to facilitate the controls for third-

party applications delivered to financial services institutions.

• The Maven “Project Object Model” (POM) is an XML representation of a Maven project and

provides corresponding artifact naming: <groupid>:<artifactid>[:<version>]

(https://maven.apache.org/guides/mini/guide-naming-conventions.html).

The CPE naming scheme, for instance, is suitable for the assignment of unique identifiers, and from a

security standpoint it is definitely wise to use CPE. However, keep in mind that there are cases where no

CPE name might exist, such as when there is not yet a CVE entry in the National Institute of Standards

and Technology (NIST) database. A common approach in this case is to create a so-called inferred CPE

name9 based on the CPE naming specification10 and hope that this inferred CPE name will become an

official CPE name in the NIST dictionary for exactly the same TPC in the future. In contrast to that

approach and especially to make the unique identifier solution reliable and deterministic, the SAFECode

TPC Working Group proposes a different approach, which is depicted in Figure 6: a unique identifier for

each TPC is at the center of this approach, and all alternative properties such as corresponding CPE

name are associated with this identifier.

The identifier solution should encompass characteristics that represent third-party components in general

and that make it possible to clearly and uniquely identify each TPC. At a minimum, this should include the

name of the vendor, author or manufacturer, product or component name and version. It is further highly

recommended that the TPC identifier solution include additional attributes or tags to a component entry,

especially those that can be used to query external databases, such as NIST's National Vulnerability

Database (NVD), for vulnerability lookup (see Figure 6). Each attribute or tag should be easily

searchable, to find and identify existing TPCs in the database and prevent duplicates. It should be

possible to add as much information as is available to a third-party component entry in this database. An

all-embracing solution might even need to go further to cover additional characteristics such as minor

version, architecture, origin and other aspects.

8 https://www.fsisac.com/article/appropriate-software-security-control-types-third-party-service-and-product-providers
9 https://www.tenable.com/blog/common-platform-enumeration-cpe-with-nessus
10 https://cpe.mitre.org/specification/

https://cpe.mitre.org/about/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53670
http://spdx.org/
http://tagvault.org/swid-tags/
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://www.fsisac.com/article/appropriate-software-security-control-types-third-party-service-and-product-providers
https://www.tenable.com/blog/common-platform-enumeration-cpe-with-nessus
https://cpe.mitre.org/specification/

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 17

Figure 6: The recommended identifier solution should have a unique identifier and include as many attributes or tags
as are available, to make each TPC uniquely identifiable.

MAINTAIN2: Map Component Names. When a suitable identifier solution is in place, effort must be

spent on assigning correct identifiers to the third-party components in a product in order to create a valid

bill of materials. The name-mapping aspect requires a system to map all names by which a TPC could be

known to a single unique identifier (essentially to add tags/attributes to the unique identifier as shown in

Figure 6). The goal of this mapping is to benefit from useful data that may be associated with each non-

unique name of a TPC, such as a new vulnerability found, patch available, etc. Intuitively the naming

system facilitates interaction with all such data sources and mapping their useful data to the associated

unique TPC identifier. For TPC name data originating from a naming standard outside a company, such

as the CPE database, for instance, strict control of correctness is important. Since external sources like

the CPE database are constantly being updated and names are deprecated and replaced, name

mappings have to be kept up to date. Otherwise, all advantages of using an external naming standard

vanish.

After establishing a naming convention for software products and their TPCs, the next step in developing

a program to address software supply-chain risk is to identify and catalog the TPCs used in an

organization's own products.

MAINTAIN3: Create a Bill of Materials. Organizations should adopt a top-down, uniform approach to

component identification and collection. It is recommended that you establish a company-wide standard

that clearly articulates the requirements for dependency identification and management. Processes need

to be established and implemented to ensure conformance to the standard. Using a technical and

automated solution for identifying and collecting software component information is advisable. This

technical solution should be at the core of the TPC management process, with supporting procedures

developed where product languages, frameworks and platforms fall beyond the scope of the standard

technical solution. These supporting procedures should additionally be developed and maintained by the

Unique
Identifier

Website

CPE
Name

Maven
groupId,
artifactId,
version

Human
Readable

Name

Short
Name

...

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 18

TPC process owner and should be extended as required to support the organization's software products.

Measurements of process success should be established, and compliance with the component

management standard should be the responsibility of application owners. The objective is to produce a

usable consistent set of data on TPC use across all of an organization's software products.

Table 1 summarizes the advantages and disadvantages of different approaches that can be applied to

create and maintain a bill of materials.

Table 1: Overview of different methods to create and maintain a bill of materials and their pros and cons

Method Pros Cons

Manually generate and maintain
a list based on what developers
attest to including

• Free • Low accuracy: developers may not list
all the TPCs in use, especially for
legacy or inherited code.

• Cost to maintain: manual effort by all
developers is required to maintain the
list.

Use automated scanning tools • Highly accurate, for
languages scanned

• Highly efficient

• Cost to purchase

• May require multiple tools: all scanning
tools are limited in the languages and
frameworks they support. Large
codebases incorporating many
languages will probably require
multiple tools for complete coverage.

Combination of manually
generated list and scanning tools
(in the event that the organization
does not possess scanning tools
that cover all languages)

• Combination of pros
of manual
generation and
using automated
scanning tools

• Combination of cons of manual
generation and using automated
scanning tools

Organizations should adopt appropriate means to find TPCs in their codebases (some example tools are

listed in Table 2 in the appendix). As a TPC may itself depend on other TPCs, this analysis can be done

recursively until no new TPCs are found. Such recursive dependency exploration could yield a large

number of dependencies, such as can be seen in Figure 1. Initially organizations may decide to limit the

depth of this exploration to focus on immediate dependencies. Limiting exploration to immediate

dependencies may not identify high-risk TPCs that may be deeply nested. Ideally, the exploration should

be done until no new dependencies are found, and then policies should be defined to identify an

actionable subset of TPCs. For example, if we have a vulnerable TPC one level deep in a single air-

gapped product, it could be marked low priority. However, if we have a vulnerable component that is five

levels deep, used in 90% of products, then it should be a high priority to resolve this.

Centralized “Approved” Components Store

One emerging best practice that addresses many of the challenges presented in this document is the use

of a centralized, curated set of “approved” third-party components. This could take the form of a

repository of components or a list of approved components and versions. Workflow can be as simple or

complex as the organization requires, and policy and automation should be used to ensure that only third-

party components from the approved list are used. Components in this store should fulfill certain security

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 19

requirements, which have been validated beforehand according to a predefined policy but which should

also be revalidated on a regular basis.

Having a centralized store also enables large, distributed teams to track which products or services use

particular components. This way, if a vulnerability is discovered in a component, the affected teams could

be promptly notified. This might include keeping third-party components manageable by limiting the

number of the same or very similar components, such as by having a set of strategic or recommended

components in place. Organizations that use third-party components must strike a balance between the

benefits (e.g., time to market, specialized functionality, re-use of commodity components, etc.) and the

risks, of which security is only one aspect. Selecting components that do have a positive reputation

regarding security is a big help toward achieving the benefits and not incurring as much risk.

3.2.2 Assess Security Risk (ASSESS)
When TPCs are identified, they must be evaluated and assessed for security risk. The security risk of a

component is dependent on multiple factors, including the maturity of the vendor’s secure development

practices as well as the context in which the component is used. The SAFECode “Principles for Software

Assurance Assessment”11 paper describes a tiered approach for assessing risk based on transparency

and maturity of the supplier’s practices.

Security risk is not influenced solely by vulnerabilities but also by a variety of other attributes. A

component that is not actively maintained is unlikely to be patched quickly following the discovery of a

vulnerability. The security risk associated with using a third-party component is highly context dependent.

For example, an authentication library used to protect a critical business function should undergo greater

scrutiny than a calendar widget used on the organization’s intranet home page. If a vulnerability is

identified, the impact of that vulnerability on the product or service that uses the component should be

considered. Determining the impact is an essential part of the assessment. A proper impact assessment

will reduce cost, by allowing an organization to focus its efforts on vulnerabilities that will have significant

impact. For example, if a component has a vulnerability on a code path that a product does not exercise,

it might be considered lower priority. A strong understanding of the attack surface of a product or service

will go a long way toward producing a meaningful risk assessment.

ASSESS1: Assess Known Vulnerabilities & Practices. Most software suppliers have established

mechanisms for handling and reporting security weaknesses and vulnerabilities, ranging from private

support forums to public issue trackers to security-specific email addresses. Organizations that use third-

party components should understand the processes for disclosure and response to security vulnerabilities

to limit the risk of such vulnerabilities to customers.

Known Vulnerabilities

For known vulnerabilities, the National Vulnerability Database and other sources such as proprietary

databases to which the organization may have access, project histories, public reports, etc., can be

queried for vulnerabilities associated with the component in question. It is important that the organization

query using all common names for the component, due to the lack of industry standard naming

conventions.

Note: Publicly known vulnerabilities, especially their quantity, are an imperfect indicator of the security

risk of a component. It can be tempting to see public vulnerabilities as a sign that a component has poor

11 http://www.safecode.org/publication/SAFECode_Principles_for_Software_Assurance_Assessment.pdf (see section 1.1)

http://www.safecode.org/publication/SAFECode_Principles_for_Software_Assurance_Assessment.pdf

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 20

security, but a healthy cycle of responding to reported vulnerabilities can in fact show that the supplier

has a strong focus on ensuring that the component is secure. However, recurrence of the same types of

vulnerabilities may point to deep-rooted security issues. Conversely, having no publicly reported

vulnerabilities is not necessarily a good thing; it could be that no one is looking for or openly

communicating vulnerabilities, and there are hidden vulnerabilities yet to be discovered. If the source

code of a third-party component is available, static source code analysis tools can be used to check for

security weaknesses or vulnerabilities.

The following should be considered:

• How many publicly known security vulnerabilities have not been remediated in the latest version

or version in use?

• Do any of the publicly known open vulnerabilities in the latest version not contain mitigating steps

to reduce or eliminate the risk?

• How quickly are publicly known vulnerabilities corrected, once identified?

• Are the same types of publicly known vulnerabilities reoccurring over time?

Practices Used by the Community/Supplier in Handling Vulnerabilities

Where possible, the development practices of the provider should be examined to determine whether the

provider practices aspects of secure development. If the provider has a well-established and published

set of secure development practices, it is more likely to produce components that satisfy security

objectives. The development practices of a community or supplier are a key indicator of the security risk

associated with its software components. Proactive efforts of the suppliers should be recognized and

used in assessing risk. An example of such an effort is the Linux Foundation Core Infrastructure Initiative

(CII), which provides “Best Practice Badges” for Free/Libre and Open Source Software (FLOSS) projects

to show that they follow best practices. Projects that voluntarily self-certify receive a badge, which allows

consumers to quickly assess which FLOSS projects are following the best practices.

The following should be considered:

• Does the community/supplier provide clear vulnerability/patch reporting methods, to include

reporting to commonly used repositories (e.g., CVE ID in the National Vulnerability Database),

and provide frequent feedback on submitted vulnerabilities?

• Is there a dedicated website for security issues?

• Is there a way to (privately) submit security patches?

• Does the supplier’s process incorporate security best practices?

• Does the supplier perform automated security testing (e.g., static analysis, dynamic analysis,

vulnerability scanning) of the components, both periodically and on an ongoing basis (since

tooling quality usually improves over time)?

• Do the supplier’s automated standards-based assessment tools utilize public vulnerability and

security flaw repositories (Common Weakness Enumeration12, CVE13, Common Attack Pattern

Enumeration and Classification14, etc.)?

• Does the community/supplier routinely disclose vulnerabilities and prepare customers for patch

deployment?

12 https://cwe.mitre.org
13 https://cve.mitre.org (see section 2.1)
14 https://capec.mitre.org

https://cwe.mitre.org/
https://cve.mitre.org/
https://capec.mitre.org/

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 21

• Does the community/supplier have a history and reputation for actively patching reported

vulnerabilities?

• Does the community/supplier have a way for researchers or customers to responsibly submit a

security vulnerability to it?

• Does the community/supplier issue security advisories or alerts as a way to notify customers of

remediation of security vulnerabilities?

A bug notification process can be as simple as a web form, a public bug tracking database or an email

address published for the purpose of reporting security findings. Providers should have a published,

coordinated, responsible disclosure policy that promotes a non-punitive response to responsible feedback

and coordination with security researchers. Bug bounties are becoming increasingly popular. Though

many providers struggle to respond well to a high volume of responders to their bounty programs, these

programs are generally a sign that a provider has some confidence in its security program and some

capacity to address findings, and it is likely doing a fair amount of internal security testing of its products.

Robust secure development practices are more likely to yield secure products. When choosing a

component, consider the secure development practices that went into creating that component. Evaluate

the community/supplier’s published practices:

• Do the supplier’s organization-level and software security policies include requirements that aim

to produce a high-quality, repeatable result?

• Does the supplier implement a secure development process that includes activities for

requirements definition, design, implementation, and test phases?

• Does the supplier include secure coding standards in the software security policy?

• Was the component developed under an established security process, such as a secure

development life cycle?

• What security assurances are available for the component (e.g., security assessments, results of

automated security testing, history of responding to security vulnerabilities)?

• What processes are used to validate code changes prior to release (e.g., code reviews,

automated security testing, etc.)?

• Is there a documented test plan and are test suites used to test the component?

• Does the community/supplier advertise its application security controls (formal security

requirements)?

• Does the community/supplier perform automated static code reviews to identify security defects

introduced during coding?

ASSESS2: Evaluate the Component’s Operational Risk. A well-maintained component is more likely

to have vulnerabilities identified and remediated quickly. Organizations that use third-party components

need to understand the responsibilities of their software suppliers regarding short- and long-term

maintenance, and should be prepared to perform the necessary updates to remain on a stable, supported

component version.

In general, components that have been actively used for a long time tend to be more mature, complete

and stable. They tend to be actively maintained and often have mature, rapid processes for fixing

vulnerabilities when discovered. Stability of the TPC is an important attribute that influences the security

risk of using the component. The age and maintenance cycle of a TPC should not be used as an indicator

of the likelihood of vulnerabilities, but rather as an indicator of the likelihood of a rapid response from the

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 22

supporting organization when a vulnerability is discovered. TPCs that are not actively maintained are less

likely to be evaluated or patched for a new vulnerability quickly.

Abandoned components, i.e., those which have reached their end of life, can present particular

challenges, since the organizations using such components are often forced to choose among (a) finding

an alternative component, (b) maintaining the component themselves, if possible, or (c) continuing to use

the component. Option (c) is especially risky, since security vulnerabilities could be discovered at any

time, and abandoned but popular components can be a rich target for attackers.

When evaluating operational risk, consider the following:

• Does the component have a regular maintenance and update cycle?

• Does the component have a clearly defined and consistent set of maintainers?

• What controls does the supplier have to protect against unapproved changes/updates?

• What is the expected lifetime of the component?

• What criteria or process will be used to determine when to update the component?

• How does the TPC maintainer manage security response?

• How much documentation is available on the component, and what is the quality of that

documentation?

• What kind of community surrounds the component (this can take the form of support forums

(Stack Overflow, paid support desk), user blogs, IRC chat rooms, email groups or books)?

• How long has the component existed and when was the last major release?

• How widely used is this component both publicly and within your organization?

• What is the reputation of the component, author, supplier or community?

3.2.3 Mitigate or Accept Risk (MITIGATE)
When security vulnerabilities are discovered in TPCs used or included in the product, the team must

understand the risk and choose the appropriate response.

The response to a vulnerability will vary, depending on certain factors, such as the severity of the

vulnerability, availability of a patch/update, ease of patching/updating and the context-specific risk. Just

because a CVE is rated "high severity" in the National Vulnerability Database does not mean it is high

severity for its usage in a given product. The team may choose to mitigate the risk, via a variety of

mechanisms, or accept the risk and not mitigate.

MITIGATE1: Patch/Update the Version. If a patch or update is available, it should be applied. There are

two different forms of this scenario: (a) installing a newer version of a TPC or (b) installing a patch. By

installing a newer or the latest version, a TPC is replaced as a whole. It is important to note that by

moving to a newer version, there is more effort required, as performance, features or interfaces can

change. However, in applying a patch, only parts of a TPC are changed during the patching process. TPC

users are advised to adopt a regular patching process to keep up with planned and unplanned

patches/updates. This approach could minimize the need to patch reactively, and it scales better when

TPC usage is high.

MITIGATE2: Replace with an Equivalent. Often there are many TPCs that offer similar functionality.

The team may choose to adopt a different TPC (that satisfies security risk assessment criteria) to replace

a vulnerable component. As an example, consider a library that is used for reading compressed files.

Assume this library is affected by a critical vulnerability and that it poses a huge risk to the product that

uses that library, because potentially malicious files from the internet are opened. If the vulnerability

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 23

remains unpatched because the supplier no longer supports the component or is just unwilling to provide

a patch, the library can and should be replaced by an alternative that fulfills the same requirements; that

is, opening compressed files. Of course, this is only feasible if the vulnerable library is not too tightly

integrated into the product and the new library satisfies equal or better security risk criteria.

MITIGATE3: Branch Code Internally. Depending on the TPC license conditions for use, the team may

take the code in-house and remediate the vulnerability. This is not a preferred method, as now the team

has taken on additional technical debt and is responsible for maintaining the code. This option should

only be pursued if the community/vendor that maintains the TPC is unwilling or unable to remediate the

vulnerability in the necessary timeframe.

MITIGATE4: Contribute to Community/Vendor. The availability of open-source components is made

possible through the contributions of a diverse set of developers willing to share their creations with the

broader development community. Thanks to their hard work and generosity, teams are able to increase

productivity through efficient reuse of existing components. Anyone consuming open-source components

should seek to contribute back to the community. Contributing to the identification and remediation of

security vulnerabilities is one opportunity to give back. The Core Infrastructure Initiative15, for example, “is

a multi-million dollar project to fund and support critical elements of the global information infrastructure”

organized by The Linux Foundation and supported by various companies. Projects receive funds from the

initiative “to assist the project in improving its security, enabling outside reviews, and improving

responsiveness to patch requests.”15

MITIGATE5: Mitigate Through Code. Depending on the vulnerability, sometimes additional code can be

added to the organization’s product that effectively wraps the TPC call/usage and mitigates the

vulnerability.

MITIGATE6: Accept Risk. There are circumstances under which an organization may choose to accept

the risk and not mitigate the vulnerability. For example, if the vulnerability exists in a code path of the TPC

that the team is not actively using, the vulnerability may be low risk for this usage. The team may choose

not to patch instantly, but instead to accept the risk for a period of time until the next scheduled

update/release. Organizations should adopt a process and set of criteria for accepting risk of TPC

vulnerabilities.

3.2.4 Monitor for TPC Changes (MONITOR)
MONITOR1: Respond to New Vulnerabilities. All product development organizations must establish a

process for discovering and responding to new vulnerabilities. Many large organizations establish a

Product Security Incident Response Team (PSIRT) capability. PSIRT is considered a standard industry

best practice. PSIRT teams typically have methods to monitor and receive vulnerability reports for both

the organization’s products and its TPCs.

Whether or not the organization has a PSIRT function, the product team must monitor all the third-party

components used in its products for reported security vulnerabilities and patch these as necessary to

mitigate known vulnerabilities. Unfortunately, this can be quite painful and time-consuming if done

manually by monitoring CVEs or the vendor/community that maintains the components. Options for

monitoring include:

15 https://www.coreinfrastructure.org/

https://www.coreinfrastructure.org/

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 24

▪ Monitoring public vulnerability data stores (such as the NIST CVE database) for notices of

vulnerabilities that affect the component

▪ Registering for the appropriate supplier-specific notification mechanisms (GitHub, supplier

announcement mailing list, etc.)

Commercial and open-source tools are available that can scan a codebase (primarily source code but

also possible for binaries, to some extent), identify TPCs used and alert the user when a used component

has a CVE filed against it. These tools enable rapid detection and notification of vulnerabilities. If an

organization is using a lot of TPCs, it might want to consider investing in one of these tools to reduce the

pain of monitoring and the risk of not discovering a known vulnerability until too late.

MONITOR2: Monitor for End of Life (EOL) and Usage. Users of TPCs should establish internal

guidance for 1) how to determine whether a TPC has reached its EOL and 2) what to do when a TPC

reaches its EOL. If a TPC has reached its EOL, it is not being maintained or updated to address

vulnerabilities or weaknesses. Sometimes, the entire TPC reaches EOL (meaning all versions);

sometimes just a particular version or branch of the TPC reaches its EOL, and consumers/users must

update to use the current supported branch. Unused TPCs should be identified and removed accordingly,

while appropriate plans have to be in place for how to treat used TPCs. The guidance and handling of a

situation may be dependent on many factors, such as the security risk for the product using the TPC, the

contract maintenance period for the product using the TPC, and the alternatives available to replace the

functionality provided by the TPC.

Monitoring for EOL can be very difficult for an organization, especially when TPCs from different

commercial suppliers and open-source communities are included in the organization’s products.

Commercial vendors usually publish roadmaps and accurate end-of-life information on their websites.

Open source communities, however, may not formally plan and publish roadmaps with future releases or

EOL information. It can be very difficult to determine whether an open-source component is still active or

has reached its end of life. For example, for many open-source projects hosted on SourceForge or

GitHub, it is unclear whether a component is still supported. Projects that do not have active maintainers

or have long periods of inactivity (lack of code commits) may be indicators of a possible EOL state.

Unfortunately, there is no single set of rules to determine EOL status that can be applied consistently and

correctly to every TPC. Organizations must establish their own criteria for determining when a component

is at risk of reaching its EOL and monitor TPCs against those criteria.

There are commercial software tools available that identify TPC components in software and provide

reports on the components (see some example tools in Table 2). These tools can also search for known

vulnerabilities affecting these components and flag components that have not been updated since a

predetermined time. Some of these tools allow the user to define those thresholds to flag components as

being stale, and possibly as having reached their EOL.

In general, if a TPC has not been updated in over a year, it is perceived by many (including several

commercial software packages that assess risks of TPCs) to be effectively unmaintained and at EOL.

While this is not always actually the case, it is reasonable to at least flag such a TPC for further

investigation of its status. Once it has been determined that a TPC has effectively reached EOL, the user

of the TPC must determine how to mitigate the risk associated with an orphaned TPC. The steps outlined

in section 3.2.3 can be applied for the handling of EOL components. The most common step is to replace

the TPC with a suitable equivalent.

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 25

MONITOR3: Communicate Risk Profile Changes. Some organizations have centralized teams that

monitor TPCs for vulnerabilities. Some organizations require each product team to monitor its own TPCs

for vulnerabilities. In both scenarios, it is important that the presence of a new vulnerability be

communicated throughout the organization to ensure that everyone whose products are affected by a

vulnerability is aware of the vulnerability and responds appropriately. Every organization must establish a

process and requirements for monitoring and communicating TPC vulnerabilities.

MONITOR4: Respond to Policy Changes. New vulnerabilities in TPCs are discovered every day. In

trying to manage the security posture of products, organizations should frequently revisit and modify

internal processes, policies and best practices regarding TPC usage and management. A TPC that could

have acceptable security risk one day might be banned from use the next day. Product teams must

understand and be prepared to respond to policy changes that affect their usage of TPCs.

3.3 Closing the Example Use Case

In contrast to Bob's company in the example use case introduced in section 2.1, John’s organization

considered the question, “How should we manage TPCs overall?” and established a robust TPC

management process and toolset. This process includes procedures and criteria for vetting the security

risk of TPCs, a company-wide naming standard for TPCs, and a repository to track what TPCs are used

and in what products. This investment by the organization results in a rapid and efficient process for

dealing with the risks associated with TPCs.

3.3.1 Selecting TPCs
John is developing a product and needs TPCs that can provide certain capabilities. His developers have

compiled a list of TPCs they would like to use. John and his team are faced with the question, “What

TPCs should we use and what is the security risk associated with them?” John and his team review

the list of approved TPCs that have been vetted for security risk in the organization’s TPC repository.

Many of the components his team wishes to use are already on the list and have been approved for

usage. Some of the TPCs John’s team wants to use are not on the list, but alternative, already approved

TPCs are listed. John asks his team to review the alternative TPCs and determine whether they are

sufficient for usage in his product. The team determines that some of the alternatives can be used, but

there are three TPCs they need that are not listed. The team engages with the security risk assessment

process for the vetting of those three TPCs.

3.3.2 Monitoring TPCs
John’s organization established a process and automation for monitoring the TPCs used in their products.

A new CVE has recently been filed against a TPC used in many of the organization’s products. All

product owners are notified of the new CVE shortly after its publication.

3.3.3 Responding to New Vulnerabilities
John selects a web server and a database server, the same ones that Bob selected in section 2, to

include in his product. When the product is in production, the TPC management program in John’s

company warns him about a new publicly known security vulnerability in the chosen version of the web

server TPC. John consults his list of TPCs used in the product to determine “What third-party

components are included in my product?” Because John’s organization has established a robust

process and toolset for tracking TPCs used, John is able to quickly determine and verify that his product

is using the specific component and version affected by the vulnerability. John promptly completes

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 26

remediation, and his company is able to issue a timely response to customers about the patches. All

other affected teams in John’s organization are able to quickly and efficiently identify and remediate as

well.

3.3.4 Maintaining the TPCs in the Product
John’s organization also considered the question, “What should we do to maintain the TPCs within

our product?” and decided to establish a process for a quarterly review of the status of TPCs used within

each product. They use both tools and manual processes to collect information about the components

they use. This helps John greatly in prioritizing patch application, as well as starting investigations to

replace components that have reached EOL. In reviewing the frequency of updates to his product’s TPC

components, John realizes that some of his components have effectively reached EOL, as they have not

had a new release in more than two years and there are no longer any active maintainers. John updates

the central TPC repository with his assessment that some components appear to be at EOL so that other

teams can benefit from his analysis. John makes plans for future releases to gradually replace these EOL

components. One EOL component is widely used in many products the organization owns and is critical

to those products' success. In reviewing the impact, the organization decides to give back to the

community and to staff maintainers for this component, allowing the organization to continue to use it with

confidence and also enabling the addition of features that would benefit its products.

John’s organization proactively defined a plan, process, criteria and supporting toolset to implement a

robust TPC management life cycle. The example above was simplistic and focused primarily on the

impact to a single development team. The return on investment in this TPC management life cycle scales

up with both the number of development teams and number of independent TPCs. Regardless of the size

and volume of an organization’s development scope, every organization must consider how it will manage

TPCs and identify processes and tools to address overall TPC management.

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 27

4 Future Considerations
Risks and challenges, as well as the corresponding countermeasures that are described above, need to

be addressed not by one single company or entity but by different parties in a cooperative effort. This

section of the white paper discusses what the SAFECode TPC Working Group believes can be done in

joint efforts to improve the overall situation and to reduce risks inherent in the use of third-party

components.

4.1 Crowdsourcing of Naming and Name Mapping

Sections 3.2.1 (MAINTAIN1) and 3.2.2 (MAINTAIN2) addressed the issues of uniquely naming TPCs and

associating meaningful characteristics with such unique names (e.g., replacing alternative names with

unique names). Given the volume of TPCs out there, any single organization implementing those

solutions would face the problem of scale. Prioritization schemes such as dealing first with more

frequently used TPCs, etc., would help. In general, such problems may be better dealt with in a

collaborative (think crowdsourced) effort. In such an effort, individual organizations can contribute unique

names (applying a standard naming scheme) and provide meaningful attributes for a small set of TPCs,

and would benefit from similar contributions from others. The resulting repository/knowledgebase would

enable effective implementation of unique naming as well as name-mapping solutions discussed

previously.

4.2 Crowdsourcing of an End-of-life Repository

There is currently no central database available providing dates that tell when a third-party component will

reach the end of life; i.e., when it will no longer be supported by its vendor and security vulnerabilities will

remain unfixed. Today, this information has to be collected in a time-consuming manner by every

organization by itself from different websites on the internet. The SAFECode TPC Working Group

recommends setting up a crowdsourced database that contains third-party components with end-of-life

information and corresponding dates.

4.3 Crowdsourcing of a Vulnerability Source Listing

Every supplier of a third-party component has its own way of providing information on security

vulnerabilities and patches. With the increasing use of third-party components, an organization would

have to monitor all these sources or, alternatively, use a vulnerability provider to perform this task.

However, there exists no central and all-embracing list with references to where security and vulnerability

information can be found for a vendor or component. A crowdsourced vulnerability source listing would be

very helpful to both TPC-using organizations and vendors.

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 28

5 Summary
Software developers commonly use and incorporate third-party components, including open-source

software, commercial off-the-shelf and proprietary software, in their code and in their products. This

practice has become the de-facto standard in software and product development today. While the

benefits are clear, with time to market and cost savings leading the way, the industry as a whole has only

recently recognized the inherent security risks of TPC usage and the necessary steps to mitigate these

risks. Third-party components cannot be blindly used as-is without responsible, disciplined consideration

and evaluation. As this document has attempted to point out, these components can be used responsibly

with proper processes, tooling and infrastructure necessary to assess and manage the security risk of

such components.

The third-party component management life cycle described in this paper provides an approach for

practitioners, software developers, managers and everybody who is using or intends to use third-party

components. This paper proposes a lightweight and easy-to-use TPC life cycle that can easily be aligned

to an existing software development life cycle to tackle security risks due to the use of third-party

components. For those who are new to this field and would like to start quickly, Figure 5, the TPC Life

Cycle Management Steps, provides quick starter elements that should be considered a minimum for

meaningful TPC life cycle management.

SAFECode and the TPC Working Group behind this work perceive this paper as a compilation of best

practices and recommendations for anyone using or intending to use third-party components. Though

much of the information presented is a result of innovation happening internally within individual software

companies, SAFECode believes that this industry collaboration has amplified these efforts and

contributed positively to advancing the state of the art across the industry.

To continue this positive trend, SAFECode encourages software providers not only to consider, tailor and

adopt the ideas outlined in this paper, but also to continue to contribute to a broader industry dialogue on

advancing processes for addressing security risks due to the use of third-party components. For its part,

SAFECode will continue to review and update this paper based on the experiences of our members and

the feedback from the industry and other experts. To this end, we encourage your comments and

contributions. To comment on this paper, please write to feedback@safecode.org. To contribute, please

join SAFECode or visit www.safecode.org.

5.1 Acknowledgements

5.1.1 Contributors

• Prithvi Bisht, Adobe

• Mike Heim, Boeing

• Manuel Ifland, Siemens

• Michael Scovetta, Microsoft

• Tania Skinner, Intel

5.1.2 Reviewers

• Nazira Carlage, Dell EMC

• Brian Glas, Microsoft

mailto:feedback@safecode.org
http://www.safecode.org/

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 29

• Shaun Gilmore, Microsoft

• Steve Lipner, SAFECode

• Matt MacNeil, Dell EMC

• Jim Manico, Manicode Security

• Nick Ozmore, Veracode

• Kristen Pascale, Dell EMC

• Joe Jarzombek, Synopsys

SAFECode also acknowledges the efforts of its Technical Director, Tom Brennan, in the development of

this paper.

5.2 About SAFECode

The Software Assurance Forum for Excellence in Code (SAFECode) is a non-profit organization

exclusively dedicated to increasing trust in information and communications technology products and

services through the advancement of effective software assurance methods. SAFECode is a global,

industry-led effort to identify and promote best practices for developing and delivering more secure and

reliable software, hardware and services. Its charter members include Adobe Systems Incorporated, CA

Technologies, Dell EMC, Intel Corp., Microsoft Corp., Siemens AG, and Symantec Corp. Associate

members include Autodesk, Boeing, Huawei, NetApp, Security Compass, Synopsys, Veracode, and

VMWare. For more information, please visit www.safecode.org.

Product and service names mentioned herein are the trademarks of their respective owners.

SAFECode © 2008-2017 Software Assurance Forum for Excellence in Code (SAFECode)

© 2017 SAFECode. All rights reserved. No part of this document may be reproduced or transmitted in any

form or by any means without prior written permission from SAFECode.

The information contained in this document represents the position of SAFECode, not any of its members

individually, toward the issues as of the date of publication. This document is provided “AS IS” with no

warranties whatsoever including any warranty of merchantability, non-infringement, or fitness for any

particular purpose. All liability (including liability for infringement of any property rights) relating to the use

of information in this document is disclaimed. No license, express or implied, to any intellectual property

rights are granted herein. This document is distributed for informational purposes only and is subject to

change without notice.

http://www.safecode.org/

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 30

6 Appendix

6.1 TPC Provider’s Security Mindedness/Posture Assessment

In addition to assessing a third-party component itself, a similar process should be established to assess

the security posture of a TPC provider. The following list provides examples of other publications on

assessing third parties:

• SAFECode’s "Principles for Software Assurance Assessment" provides a framework for

examining the secure development process of commercial technology providers

(http://www.safecode.org/publication/SAFECode_Principles_for_Software_Assurance_Assessme

nt.pdf).

• Google’s Vendor Security Assessment Questionnaire (VSAQ) is an interactive questionnaire

application that supports security reviews by facilitating not only the collection of information, but

also the redisplay of collected data in templated form (https://github.com/google/vsaq).

• FS-ISAC Third Party Software Security Working Group, "Appropriate Software Security Control

Types for Third Party Service and Product Providers," Version 2.3/October, 2015

(https://www.fsisac.com/article/appropriate-software-security-control-types-third-party-service-

and-product-providers)

• Software Assurance Maturity Model (SAMM) is an open framework to help organizations

formulate and implement a strategy for software security that is tailored to the specific risks facing

the organization (http://www.opensamm.org/).

• Building Security In Maturity Model for vendors (vBSIMM) is concerned with measuring large

numbers of vendors in order to assess secure software development lifecycle maturity and

control risk (https://www.bsimm.com/about/bsimm-for-vendors/).

6.2 Related Work

There is an existing and growing ecosystem of open-source and commercial tools and services that

address various challenges associated with third-party component management. This section is not

intended to be a comprehensive analysis of the space, but rather only to touch on the types of tool and

services available. Furthermore, this section is not intended to give recommendations on which tool,

service or provider one should choose, or to endorse a certain company, tool, service or provider.

Instead, the SAFECode TPC Working Group highly recommends that the reader use these resources to

obtain a picture of the tool landscape, in order to choose the most suitable solution for a certain

environment and use cases.

6.2.1 Identification of Third-party Components and Dependency Management
Dependency management solutions focus on software products that allow the identification of third-party

components that a product depends on. There are a few open-source tools, but the majority of tools on

the market seem to be commercial. The listed tools, especially the commercial ones, usually not only

identify OSS and COTS components, but also provide component management and cover checking

open-source license obligations.

http://www.safecode.org/publication/SAFECode_Principles_for_Software_Assurance_Assessment.pdf
http://www.safecode.org/publication/SAFECode_Principles_for_Software_Assurance_Assessment.pdf
https://github.com/google/vsaq
https://www.fsisac.com/article/appropriate-software-security-control-types-third-party-service-and-product-providers
https://www.fsisac.com/article/appropriate-software-security-control-types-third-party-service-and-product-providers
http://www.opensamm.org/
https://www.bsimm.com/about/bsimm-for-vendors/

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 31

Table 2: Tools for identification of TPCs and dependency management

Name Vendor Type Description Reference

Binary Analysis
Tool (BAT)

Tjaldur
Software
Governance
Solutions

Comm. Looks inside binary code to find
compliance issues and reduce
uncertainty when deploying free and
open-source software

http://www.binaryanalysis.o
rg/

BinDiff Google OSS Performs fingerprinting and static flow
analysis, which allows comparing
binaries in order to check whether two
binaries are identical. Can be used to
identify libraries an application depends
on

https://www.zynamics.com/
bindiff.html

DependencyCheck OWASP OSS Identifies project dependencies and also
checks for known vulnerabilities (CVE).
Supports Java, .NET, Ruby, Node.js and
Python

https://www.owasp.org/inde
x.php/OWASP_Dependenc
y_Check

Hub Black Duck Comm. Creates inventories of used open-source
software. Maps to known vulnerabilities

https://www.blackducksoftw
are.com/products/hub

Nexus Sonatype Comm. Provides a continuous component
management system to support
development teams in choosing healthy
components and not using risky
components

http://www.sonatype.com/p
roducts-sonatype

Palamida
Enterprise

Palamida Comm. Scans open-source and binary files to
detect open-source software and other
third-party code in development projects

http://www.palamida.com/p
roducts/enterprise

Protecode Synopsys Comm. Finds known vulnerabilities and license
violations in the software supply chain
before they become legal liabilities or
business risks

http://www.synopsys.com/s
oftware

Protex Black Duck Comm. Automatically scans, identifies and
inventories open-source software

https://www.blackducksoftw
are.com/products/protex

Victims database Red Hat OSS Maps JAR file SHA-512 hashes to CVE
IDs

https://victi.ms/

6.2.2 Vulnerability Databases
Security vulnerabilities affecting third-party components as well as corresponding patches should be

monitored and addressed accordingly. For their own products, of course, many vendors supply security

vulnerability information as well as information on patches, either publicly or to paying customers directly.

These range from security bulletins from large software companies to issues tagged “security” on an

open-source project’s web page. Unfortunately, these web pages are usually in different formats and

would have to be monitored constantly. However, there are a few free or commercial vulnerability

information sources that provide uniform vulnerability and patch information. Table 3 provides a non-

comprehensive list of free and commercial vulnerability information databases.

Nearly all databases report in a vulnerability-centric manner; i.e., a single CVE/vulnerability per published

advisory. Flexera was found to report on a patch basis, where multiple vulnerabilities or CVE numbers are

included in a single advisory.

http://www.binaryanalysis.org/
http://www.binaryanalysis.org/
https://www.zynamics.com/bindiff.html
https://www.zynamics.com/bindiff.html
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.blackducksoftware.com/products/hub
https://www.blackducksoftware.com/products/hub
http://www.sonatype.com/products-sonatype
http://www.sonatype.com/products-sonatype
http://www.palamida.com/products/enterprise
http://www.palamida.com/products/enterprise
http://www.synopsys.com/software
http://www.synopsys.com/software
https://www.blackducksoftware.com/products/protex
https://www.blackducksoftware.com/products/protex
https://victi.ms/

Managing Security Risks Inherent
in the Use of Third-party Components

© 2017 SAFECode – All Rights Reserved. 32

Table 3: A few examples of free and commercial vulnerability information databases

Name Type Description Reference

NIST National
Vulnerability
Database

Free – vulnerability-
centric

U.S. government repository of
standards-based vulnerability
management data

https://nvd.nist.gov/

Risk Based Security
VulnDB

Commercial –
vulnerability-centric

Vulnerability intelligence through a
continuously updated data feed

https://www.riskbasedsecurity.com/v
ulndb/

Flexera Software
Vulnerability
Intelligence
Manager (VIM)

Commercial – patch-
centric

Vulnerability intelligence and tools to
support software vulnerability
management

http://www.flexerasoftware.com/ente
rprise/products/software-
vulnerability-
management/vulnerability-
intelligence-manager/

Symantec
DeepSight

Commercial –
vulnerability-centric

Threat intelligence and information on
vulnerabilities

https://www.symantec.com/services/
cyber-security-services/deepsight-
intelligence

https://nvd.nist.gov/
https://www.riskbasedsecurity.com/vulndb/
https://www.riskbasedsecurity.com/vulndb/
http://www.flexerasoftware.com/enterprise/products/software-vulnerability-management/vulnerability-intelligence-manager/
http://www.flexerasoftware.com/enterprise/products/software-vulnerability-management/vulnerability-intelligence-manager/
http://www.flexerasoftware.com/enterprise/products/software-vulnerability-management/vulnerability-intelligence-manager/
http://www.flexerasoftware.com/enterprise/products/software-vulnerability-management/vulnerability-intelligence-manager/
http://www.flexerasoftware.com/enterprise/products/software-vulnerability-management/vulnerability-intelligence-manager/
https://www.symantec.com/services/cyber-security-services/deepsight-intelligence
https://www.symantec.com/services/cyber-security-services/deepsight-intelligence
https://www.symantec.com/services/cyber-security-services/deepsight-intelligence

