

© 2017 SAFECode ï All Rights Reserved.

Tactical Threat

Modeling

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 2

Table of Contents

1. Foreword ... 3

2. Why Do Threat Modeling? ... 4

3. When To Do Threat Modeling .. 4

4. Updating the Threat Model .. 5

5. How To Do Threat Modeling .. 6

6. Failing at Threat Modeling ... 7

7. Building a Great Team ï People .. 9

7.1. Selecting Good Threat Modelers .. 9

8. Threat Modeling Scope .. 10

9. Methodology ... 11

10. Terminology .. 12

10.1. Weakness vs. Vulnerability ... 12

11. Handling Complex Systems .. 12

12. Technologies/Tools .. 13

13. Threat Modeling Within a Development Life Cycle (SDLC) .. 14

14. Threat Modeling Examples .. 16

14.1. Web-based User Feedback System ... 16

14.2. Authentication for the Internet of Things (IoT) .. 18

15. Threat Modeling and Agile Development Practices .. 21

15.1. When To Do Agile Threat Modeling .. 21

15.2. Threat Modeling in the DevOps World .. 22

16. In Closing .. 23

17. About SAFECode .. 23

18. Glossary .. 24

19. Acknowledgments .. 24

20. References .. 25

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 3

1. Foreword
The Software Assurance Forum for Excellence in Code (SAFECode) is a non-profit organization

exclusively dedicated to increasing trust in information and communications technology products and

services through the advancement of effective software assurance methods. SAFECode is a global,

industry-led effort to identify and promote best practices for developing and delivering more secure and

reliable software, hardware and services.

This document, in addition to the online training provided by SAFECode (https://training.safecode.org/),

will provide guidance about the process of threat modeling as well as the "generic" framework in which a

successful threat-modeling effort can be conducted. We will suggest basic approaches and more

extensive sources for developing your own workflow. Moreover, we will address issues less explored in

the literature, such as team composition, scaling the effort, threat modeling in Agile environments, and

others.

© 2017 SAFECode. All rights reserved. No part of this document may be reproduced or transmitted in any

form or by any means without prior written permission from SAFECode.

The information contained in this document represents the position of SAFECode, not any of its members

individually, toward the issues as of the date of publication. This document is provided ñAS ISò with no

warranties whatsoever including any warranty of merchantability, non-infringement, or fitness for any

particular purpose. All liability (including liability for infringement of any property rights) relating to the use

of information in this document is disclaimed. No license, express or implied, to any intellectual property

rights are granted herein. This document is distributed for informational purposes only and is subject to

change without notice.

http://www.safecode.org/
https://training.safecode.org/

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 4

2. Why Do Threat Modeling?
Threat modeling is a core activity and a fundamental practice in the process of building trusted

technology; it has been identified as one of the best "return on investment" activities with respect to

identifying and addressing design flaws before their implementation into code. It aims to identify the

attacks a system must resist and the defenses that will bring the system to a desired defensive state.

These attacks expose and exploit potential weaknesses that will affect the system being modeled in

negative ways.

"System" in this context is defined very broadly to include any type of computer system, including small

pieces of software functionality, discrete software applications, complex integrations involving multiple

hosts, multiple applications and runtime execution environments, infrastructures and even distinct legal

entities.

The express aim of threat modeling is to identify and eliminate design issues: to identify security

weaknesses or arrive at a set of security needs that must be built. These are sometimes referred to as

"requirements." We are using the term "requirements" in this document to mean "security issues that

need to be addressed." In other words, "requirements" refers to any required item that must be

implemented and does not necessarily refer to formally generated requirements.

Once identified, the security requirements when implemented will bring a system or set of systems to the

intended security posture. Identifying likely threats and the probable consequences of successful attack is

the method of investigation to identify an appropriate set of defenses. It is an industry best practice to

validate the defenses that were derived from the threat model.

While some threat-modeling methods focus on identifying threats and security issues, other methods also

perform an assessment of the resulting risks by rating the consequences (impacts) and the likelihood of

threats. Such methods are also called Threat and Risk Analysis or Assessment (see, for example, ISO

27005 [23], NIST SP 800-30 [24]). Such a rating can be used to prioritize defenses.

3. When To Do Threat Modeling
Ideally, threat modeling is applied as soon as an architecture has been established. There is a timing

element to threat modeling that we highly recommend understanding. No matter how late in the

development process threat modeling is performed, it is always critical to understand weaknesses in a

design's defenses. The cost of addressing issues will generally increase when we uncover design misses

and missed security requirements later, or worse, at the end of the development process. It is much more

useful to begin the process of identifying potential attacks and their treatments while identifying other

system requirements.

A threat model should begin when the major structures, the major components or functions of an

architecture, are known. Before this point, much time might be wasted redoing work as structure changes.

Beginning too long afterwards might mean that significant structural changes or additional structures

required for security will be uncovered only after the timeframes and resources allocated for development

have been exhausted. Broad requirements and constraints help to define an architecture, and these

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 5

necessarily become more specific as things become better defined. Security must be among these and

present from the start, becoming "built in" rather than "bolted on."

Thus, threat modeling can be used as part of requirements engineering to derive security requirements,

based on a first architecture overview, or threat modeling can be used as a design analysis technique,

being applied to the software design before coding starts. Threat-modeling techniques might focus on one

of these use cases.

Though teams are encouraged to perform threat modeling early in their structural definition process, if

that cannot be achieved, threat modeling is still a useful exercise regardless of how close the system is to

deployment or how long the system has been in use. The next development cycles may be used to

mitigate risks that a system currently carries. Even when changes to a system are not expected,

organizational decision-makers may wish to understand any significant risks a system may add to the

organization. Note that there is a distinction between end of development and end of support, and even

when active support has ceased, a proper threat model will bring clarity about the possible flaws in the

system, which will inform a decision on further investment in the product.

4. Updating the Threat Model
It may not always be clear to a team working on a given release whether or not the threat model needs

updating. A partial list of suggested revision triggers is as follows:

1. Changes affecting the processing, handling or classification of data by your software: for

example, changes to sensitive content, parsing and handling input (user and/or automated),

formatting data streams, changes pertaining to cryptographic algorithms, keys and key

management, etc.

2. Addition of a new sub-component, database or data repository, even if the change appears to be

minor and not directly related to security

3. Any additions or changes in security controls and functionality:

¶ Authentication

o Adding or changing an authentication method, or mechanism

¶ Authorization

o Shifting the trust relationships between any components or actors in the system (change

of user levels, change of data access permissions, etc.)

o Adding or changing an authorization method, or mechanism

¶ Logging, monitoring and alerting

o Adding or changing application monitoring, business analytics and insight, auditing and

compliance requirements or forensics

¶ Cryptography

o Adding or changing cryptographic functionality: hashing algorithms, salt,

encryption/decryption algorithms, SSL/TLS configuration, key management, etc.

4. Introducing or changing communication channels between subcomponents, the back end, etc.: a

new data flow might need to be authenticated, authorized and protected in transit.

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 6

As a rule of thumb, changing or adding data that is externally produced or internally consumed ï for

example, data stores, log files, webpage contents, descriptive error messages, temp files, etc. ï should

be considered likely triggers for reconsideration of the threat model.

Because it is impossible to come up with a comprehensive checklist for everything that invalidates a

threat model, please use the list above as a reference and make any necessary adjustments to fit your

software development needs.

Please note that sometimes revisiting the threat model might produce no actions other than confirming

that the threat model is still up to date.

5. How To Do Threat Modeling
The process of threat modeling usually involves some of these distinct but closely related sub-activities:

¶ An initial, possibly incomplete, description of the structure, use cases, misuse and abuse cases,

and resources the system is subjected to or constrained by. This is often represented as a

diagram (e.g., a data-flow diagram, DFD [7]) that describes the system and maps (some of) the

potential attack points from outside the system. It is supported by annotations about the internals

of the system, data transformations and storage, and particulars such as deployment modes or

asset descriptions. This can be done at varying levels of formality, from specification documents

to drawings on the back of an envelope ï but the description must accurately depict the system

being modeled.

¶ The identification of a set of possible threats that would be relevant to the system being analyzed,

how they would present themselves in various possible scenarios and what could be done to

mitigate them.

There are some popular ways of expressing this description and identification:

¶ Architecture representations (usually logical or component view, but not limited to these views) [6]

¶ Data flow diagrams (DFDs) [7]

¶ Attack sets as attack trees [1]

¶ Mind maps

¶ Libraries of possible threats [2]

¶ Lists of security objectives, attack vectors and potential mitigations

¶ Dynamic media, such as the use of white-boards to foster stakeholder interaction

¶ Sequence diagrams [21]

The specific format is less important than its utility to the modelers. As long as it is sufficiently expressive,

containing all important details without being overwhelmed with unimportant information, and the threats

are relevant and well-defined, the modelers will usually converge to a "language" that works. In general, a

representation will contain more than one of the items listed above; sometimes most of them. Still, in most

threat models one or more of the included elements will be incomplete. Threat models are living

documents subject to revision as more information becomes available.

There are many possible ways of performing threat modeling, and the consensus is that there is not one

single perfect way. A valid process is one that is repeatable, manageable and, above all, able to identify

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 7

potential threats. This document aims to provide guidance on some of the theory and lessons learned in

the field that should be of immediate applicability, without dictating a specific methodology. Use the

material below as guidelines to identify or develop a methodology that will work for your particular case.

As previously noted, threat modeling identifies the threats a system must resist and the defenses that will

bring the system to a desired defensive state. The desired defensive state is described in the form of a

set of security requirements (also referred to as security controls) for the system that needs to be

implemented.

This set of security requirements leads to security testing requirements that define the security testing

scope of the system. If the security testing requirements are not defined, security testing will be done

blindly, increasing the cost of the effort and reducing the comprehensiveness of the test.

Traditionally, the objectives of a system are defined in two categories of requirements:

¶ Functional requirements: these define a specific behavior or function of a system.

¶ Non-functional requirements: also referred to as quality requirements, these specify criteria that

can be used to judge the operation of a system, rather than specific behaviors.

Non-functional requirements cover a range of areas, including but not limited to:

¶ Security and privacy

¶ Accessibility

¶ Responsiveness

¶ Scalability

Each security requirement is generally composed of three parts:

¶ The problem: the potential weakness being addressed. Some practitioners map findings to the

Common Weakness Enumeration (CWE) database [17] when appropriate.

¶ The control: this is the task that needs to be done or the operation that needs to be performed.

Generally, it is written in a technology-agnostic language and focuses on the acceptance criteria

without specifying how they can be achieved.

¶ Implementation guidance (optional): this explains how the control can be achieved. While this is

an optional component, it is strongly recommended that you include specific guidance on how the

requirement can be achieved in the appropriate technology stack.

By the nature of the development process, threat modeling is also a good opportunity to identify

constraints that should be applied to the implementation, such as choice of controls to mitigate identified

threats, and to raise possible red flags to be considered at implementation and testing. These too have a

place in the threat model findings and results.

6. Failing at Threat Modeling
When learning a new process like threat modeling, it is important to see how it can fail, as much as how it

can succeed. It is not just about how flaws and threats might have been missed, but also about failures in

the threat-modeling process itself. For instance, is it a failure to think threat modeling is not necessary

because the product undergoes penetration testing and code reviews? Is it a failure to think there is no

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 8

reason to do threat modeling because the system is already deployed and no breaches have been

detected?

In a talk [11] given in early 2016, SAFECode members Jim DelGrosso of Cigital and Brook Schoenfield of

Intel addressed six myths of threat modeling that might well be considered failures:

¶ "We already do pen-tests with tools AND people é we don't need to do threat modeling."

¶ "The system is already built and deployed é there's no reason to do threat modeling."

¶ "We did a threat model when the system was built é we don't need to do it again."

¶ "Threat modeling is too complicated."

¶ "We don't have software security experts, so we can't do threat modeling."

¶ "I'm doing threat modeling at all the right times ... there's no reason to do pen tests or code

reviews or <whatever> anymore."

These might be classified as failures of mindset ï they present a barrier of entry to threat modeling by

trying to stop it from happening or justifying it away. On the other hand, we have practical failures caused

by failing to adhere to a proper methodology:

¶ Failing to control scope of the analysis. It is rare that the team has as much time as needed or

desired, so there needs to be control over what will actually be analyzed.

¶ Focusing on areas that are understood really well. For example, it has been observed that

cryptography gurus devoted considerable time digging into the nuances of crypto, even though

the use of crypto may be unnecessary.

¶ Not defining "success." When building out a threat-modeling program, you must define what

"success" looks like. Is it the identification of a defect that could not be found through your

penetration testing and code review efforts? Is it identifying that some flaw is occurring under

some particular set of conditions? Is it building the set of security controls that will drive design

and implementation? Perhaps something else?

Threat modeling is a human activity best practiced with a range of expertise. Major pitfalls can occur

when stakeholders with key knowledge are not included in the process, or when the team fails to agree

on an up-to-date view of the system, its "moving parts" and communication mechanisms. Many examples

of threats that failed to be identified at threat-modeling time are in the categories of "things that fell

between the cracks during design" and failures to communicate, as some of the examples later in this

paper will show. Failures of communication are responsible for "Eureka moments:" one designer explains

how a certain part of the system works, and is interrupted by an implementer who clarifies that that is not

exactly how it is working; the team collectively experiences a sudden understanding that previous

assumptions were perhaps erroneous. This demonstrates the importance of including key stakeholders

and making sure the formats adopted allow for clear and precise communication of details.

Attack surfaces that have not been completely addressed are another common pitfall encountered during

threat modeling, which can derive from a number of communication failures. For example, expectations

about interfaces or interactions with external systems may not have been explicitly expressed and fully

understood while threat modeling. Sometimes the inclusion of functionality provided by a third-party

component has not been accounted for ï or even known during a threat-modeling session. Each of these

misses, when discovered, will require revisiting the threat model.

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 9

Finally, there are distinct perspectives for what the threat model is intended to do: it will identify specific

threats, document the topology, identify systemic failures in the control environment, and it may locate

policy violations that are not specific security threats. Using a threat model to focus exclusively on threat

identification and not on the full set of valuable intelligence, it can offer would be a common but costly

mistake.

7. Building a Great Team ï People
When conducting a threat model it is critically important to include the product owner and technical

subject matter experts (development, network design, operations), to the degree they are available. There

is also value in having quality engineering/assurance people involved, and sometimes even the people

responsible for documentation and release engineering.

The technical subject matter experts must include those people who understand the gross structure of the

entire system ("solution architects"), people who are structure experts for defined portions of the system

("architects"), and people with expertise from domains as diverse as networking, hosting, operating

systems, deployment vehicles and processes, cloud, quality and quality assurance, integration and

software design. Even implementers may have key information that will improve the comprehensiveness

and applicability of the threat model.

It has been said that "threat modeling is a team sport." Reducing the size of the team due to schedule and

other limitations may sound like a good idea in the beginning, but over time the quality of the resulting

threat model tends to decline, as much "tribal knowledge" is missed by the smaller set of individuals

involved in the process. With that said, a threat model is a living document, and as such, it is subject to

repeated revision. We recommend that you create a draft that is filled in as the process evolves and more

knowledge is gained. Filling in a draft threat model is an organic process that builds understanding in a

team and can involve more expertise within the team as the process unfolds.

Apart from technical expertise and knowledge of the system, it is useful to have individuals with a variety

of approaches and talents in the group. For example, you might include a critical thinker who is able to

mimic the exploration process done by an attacker, probing at sensitive points, and a process-oriented

thinker who is able to unravel the sequence of events and transformations of data as it works its way

through a system being modeled. These two, while offering very distinct views, should be able to

complement each other and float up a larger number of possible threats to be evaluated. In practical

terms, at least some people in the group should have experience and knowledge in "how to break

software."

If the system will serve customers who have specific needs such as a government's Justice Ministry or

those affected when privacy issues cross borders, then it might be beneficial to have legal counsel

involved during threat modeling.

7.1. Selecting Good Threat Modelers

Effective contributors to a threat-modeling process would have a background that includes software

engineering and architecture knowledge, at a university level or equivalent, enterprise architecture and a

basic knowledge of software security (e.g., definition of basic threats). It is not necessary to have a

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 10

computer science degree, as all of these skills can be acquired with experience, but they must be present

in the team.

8. Threat Modeling Scope
Defining scope is critical in conducting threat modeling: where do you start and where do you stop?

¶ How deep do the threat modelers go into the structure of the system?

¶ What are the prerequisites for beginning a threat model?

¶ What constitutes completion of the model?

How much of a system to investigate when threat modeling is often dependent upon the size and

complexity of the system, as well as factors such as the runtime/execution environment, the typical

environment in which the software will be run, any infrastructure or services that the software is expected

to consume or use, language(s) in which the software is written, how it is deployed to be used, etc.

Hence, there is no clear definition that applies to every system with any particular combination of factors.

As for prerequisites, some practitioners suggest listing every asset coupled to every possible technical

attack. Others contend that initial lists need to include every possible vector from which a threat may

materialize, as well as all possible points in the system where mitigations and controls can be

implemented. However, having enumerated such lists, threat modelers will be faced with the problem of

culling these lists of unlikely attack scenarios and assets whose loss would be insignificant or would not

interest likely attackers. Prioritization of what controls to actually implement, no matter what approach is

used, will always be important in the face of limited resources.

The problem then becomes knowing when to stop ï once the prerequisites exist and a methodology has

been selected, how do we know the work is complete? A general rule of thumb might be that the threat

model is complete when all the attack surfaces whose compromise could affect the organization or the

product in some significant manner and which are exposed to attack have been enumerated. Further, the

threat model may be considered to be complete when all the likely controls to protect the attack surfaces

have been defined.

At whatever level of granularity the system under analysis exists, whether it be a discreet application, a

library, a set of integrated systems or an enterprise architecture, a boundary to the analysis has to be

agreed upon at the beginning of the threat-modeling exercise, in order to define an exit point at which it

can be considered done.

The definition of "done" may include guidance covering when to refresh the threat model. Although some

treat it as a living document, subject to change as the system evolves, other views suggest that structural

change to the architecture, the existing security controls, or any design element that bears upon the

security posture of the system are the events that should trigger a holistic threat model review. If there

have been no significant changes, when the only changes being made are non-security features, then a

comprehensive threat model will "stand" and not need updating.

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 11

9. Methodology
A non-exhaustive but representative list of examples of industry-accepted methodologies and best

practices for threat modeling would include at least these:

¶ Microsoft Threat Modeling Process: a step-by-step approach to threat modeling that focuses

on identifying assets and architecture, decomposing the application, identifying and documenting

the threats, and ranking them in order of criticality

¶ P.A.S.T.A (Process for Attack Simulation and Threat Analysis): a seven-step process

applicable to most application development methodologies, which is platform agnostic. It not only

aligns business objectives with technical requirements, but also takes into account compliance

requirements, business impact analysis and a dynamic approach to threat management,

enumeration and scoring.

¶ Trike: a methodology used to perform threat modeling that focuses on a requirements model

designed to ensure that the level of risk assigned to each asset is classified as acceptable by the

systemôs stakeholders

¶ ATASM: Architecture, Threats, Attack Surfaces, and Mitigations is a threat-modeling approach

that highlights the importance of structural understanding of a system for the purpose of threat

modeling (architecture). The architecture is broken apart into its logical and functional

components (decomposing and factoring) to discover all potential attackable surfaces (inputs and

outputs of the system). Decomposition is also used to define those points at which defenses will

be built (mitigations are placed at defensible boundaries).

¶ Threat Library/List Approach: using a pre-defined set of common and prevalent threats, a team

will try to identify instances of them in the product by tracking the triggers -- for example, cross-

site scripting might be present if a product offers a web interface and no input validation and

output sanitization. The team is free to evolve the threat library as technologies and frameworks

change [2].

¶ Lightweight/Rapid Threat Modeling: there are a range of processes that use lighter-weight

variations of other methodologies, and additional approaches that use quick classifications and

other ways to achieve a similar result in less time for less critical systems [18].

Besides methodologies for threat modeling, there are others for threat enumeration and discovery, such

as Microsoftôs STRIDE [12], or using the many "Top X Threats" lists (for example, OWASPôs Top 10 [13];

there are others available) as a basis for a threat library, and for the ranking of findings there are options

including CVSS (Common Vulnerability Scoring System) [14], Open GroupÊ Factor Analysis of

Information Risk (FAIR), CWSS (Common Weakness Scoring System) [15] and CWRAF (Common

Weakness Risk Analysis Framework) [16], each with particular applications and scenarios to which they

might best apply. One helpful criteria is to differentiate between vulnerabilities and weaknesses, as

explained in section ñTerminology.ò CVSS targets vulnerabilities while FAIR and CWSS target

weaknesses. There are other commonly used risk methodologies as well.

STRIDE may require more initial experience with threats than might be available without a security expert,

while the Top X lists offer those attacks that have been most prevalent at a given time, built from statistics

provided by practitioners. CVSSv3 (and previously, v2) is rapidly becoming the de facto standard when

ranking vulnerability scenarios in order to evaluate their criticality and allocate resources for their

mitigation.

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 12

Each organization will adopt a different set of practices or variations on these processes that suits its

needs. Therefore, instead of choosing a specific approach over others, in this paper we address the

common challenges that frequently arise with most of these approaches, with recommendations based on

the lessons learned from SAFECode member organizations. They can be adapted to most approaches

and can have significant impact on the success of your practice.

10. Terminology
Incorrect usage of terminology can cause confusion and leads to lack of buy-in. The first step toward a

successful practice is educating the stakeholders on the terminology and the correct distinctions among

terms. "Threat," "risk" and "vulnerability" are often used incorrectly and interchangeably to refer to

different concepts. See the glossary at the end of this document for formal definitions.

10.1. Weakness vs. Vulnerability

Common Weakness Enumeration (CWE) [17] is a catalog of weaknesses that aims to enable

communication of weaknesses between systems or organizations. For example, cross-site scripting is

identified as CWE-79: "Improper Neutralization of Input During Web Page Generation." The catalog

contains descriptions, consequences, likelihood of exploits, examples, etc.

On the other hand, the Common Vulnerabilities and Exposures (CVE) [22] is a dictionary of publicly

known information security vulnerabilities and exposures found in existing, implemented and deployed

systems. For example, the CVE entry CVE-2014-0160 is known by its popular name "Heartbleed": a

specific input validation weakness as applicable to certain versions of OpenSSL libraries when handling

Heartbeat Extension packets.

The distinction between weaknesses and vulnerabilities is that, before the implementation of software

starts, there is no vulnerability that can be associated with the project, but there might be weaknesses

that can be identified during threat modeling.

11. Handling Complex Systems
Threat-modeling complex systems that contain multiple components with different roles can be

challenging. This is encountered, for example, in Internet-of-Things systems that may contain various

components such as a separate cloud service, web application inside devices for interactions and

configuration, multiple sensors and so on.

The recommended approach is to examine the system at multiple resolutions for threat-modeling

purposes. For example, at a two-level approach:

¶ A team would first model the system at a high level, focusing on the interaction between large

components.

¶ Then for each large component, the team will model the component separately, focusing on the

component itself and the interactions within it and with other components.

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 13

The benefit of this approach, in addition to breaking the activity into manageable pieces, is that it will

result in a smaller and more contextually focused set of security requirements for each component, as

applicable to that component.

12. Technologies/Tools
Many of the processes that support and enable threat modeling can be automated or at least made more

accessible by the judicious use of tools.

While there are both free and commercial tools that may aid the threat-modeling process, as of this

writing there is no substitute for human analysis and, importantly, experience in threat modeling. It will

take time and patience to deliver a well-crafted threat model. It will take time, perseverance and probably

quite a few mistakes to build threat-modeling expertise in an organization. No single tool can offer a

"silver bullet" for the process of threat modeling.

Late in 2015, many of the members of SAFECode joined in a birds-of-a-feather discussion on the subject

of identifying a tooled workflow to enable both beginners and seasoned practitioners to perform and

improve their threat-modeling processes, and they agreed on the present state of the field:

¶ Current existing solutions fail to address sufficiently the growing needs of security practitioners.

¶ The demand for and interest in threat modeling is ramping up.

¶ There are few tools available, constituting a barrier for entry.

¶ There are few opportunities of mentorship and training available to overcome that barrier.

¶ Starting a threat-modeling practice can be challenging.

¶ The whole effort is sometimes seen as purely time-consuming, as results are not always

immediately evident.

In order to fulfil the birds-of-a-feather groupôs vision of an appropriate tool, a solution would have to

deliver value as a security tool solely by virtue of its use ï that is, the use of the tool would generate

security findings that would be of immediate relevance to the user. It would generate run-of-the-mill

requirements -- for example, "you accept input from an uncontrolled source, therefore you need to have

proper input validation" ï- and still be expandable and extensible so that it can address the unique needs

of the product being modeled, the domain where it exists, internal policies and requirements, as well as

enabling experienced practitioners to add their own findings and input.

Based on these initial requirements, the group agreed on a wish list that would serve as a basis either for

development of a tool or for evaluation of existing offerings:

¶ A solution should enable modeling of architecture, by diagramming, and linking of separate

models to create larger systems.

¶ It should provide an annotation framework that encourages creation, extension and customization

of architectural annotations and analysis, and custom guidance for issues identified during

analysis.

¶ The analysis process should make use of the diagramming and annotations to identify issues and

provide solutions, and accept findings created in free form by practitioners.

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 14

¶ The findings need to be trackable in their state (mitigated, N/A, etc.) and ranked according to

some of the existing industry standards, like CVSS [14] or Open GroupTM Factor Analysis of

Information Risk (FAIR).

¶ The solution should be agnostic about methodology, supporting whichever one is chosen by the

end-users.

¶ It should provide report generation and version-to-version tracking of models, with inheritance of

unmitigated previous findings.

¶ As additional nice-to-haves, the tool should enable import/export of its models to industry-

standard tools to enable presentation and sharing (for example, Visio diagrams, or more robust

existing architecture modeling tools).

¶ And finally, the tool should support the use of distinct overlays, annotations and analysis rule sets

to support other forms of modeling analysis, such as resilience, recovery, privacy data flows, etc.,

allowing for multiple uses of a single model.

Other practical aspects were brought up, such as the tool being platform-agnostic and supporting

concurrent multiple users for collaboration, but these were considered minor.

With these in mind, we see that today there is no single tool available that fulfills every single point on the

checklist, but there are alternatives that offer partial help. This is by no means a complete list, and we do

not stand behind any particular tool as being "best of breed" or similar. There are commercial tools that

offer some of the more specialized functionality found in the list, to varying degrees of success and

independence from any given methodology, and a quick web search will come up with some of those.

¶ Microsoft Threat Modeling Tool 2016 [3] -- free to use, offers diagramming, annotations and a rule

set that can be modified by the user

¶ Mozilla SeaSponge [4] -- free to use, browser-based, offers diagramming (with multiple linked

diagrams) and annotations. Offers loading a configuration file to enforce standards. No rule set or

rule application

Some enterprises have pointed to their work developing an internal tool; others have had experience

adapting existing tools to their needs. Some list the use of applications like Visio for diagramming and

Excel for bookkeeping of findings, and these are all perfectly valid alternatives. At the end of the day, you

should be able to find tooling that will permit your own workflow to evolve, the characteristics of your

product to be captured, and findings to be identified and communicated in a clear, concise and ranked

way, so that they can be properly mitigated.

13. Threat Modeling Within a Development
Life Cycle (SDLC)

Threat modeling is an activity best executed while creating the structure of systems (architecture) and

especially, to discover what security elements, features, requirements and constraints should be

designed (implementation specification). That is, threat modeling delivers its best, most useable results

when performed early, before implementation has begun.

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 15

It does not matter what form of software development life cycle is used: Agile, Waterfall, Continuous

Evolution/Improvement, Branched, what-have-you. The security requirements and constraints must be

determined before the product can be built. Secure design naturally follows a threat model that is as

complete as it can be, given what is known about an architecture and the design that expresses it at the

time of the threat modeling activity or a threat model update. As the learning from iteration is incorporated

into a design, the threat model may also have to be iterated, along with design changes.

"If the architecture is changing, then the process should start at architecture assessment and

threat modeling. The assumption is that the existing architecture has been assessed and threat

modeled to ensure that appropriate security requirements have been built into the design. In

cases where there never has been an architecture assessment and threat model, the architecture

should be treated the same as a greenfield project.

"Even if there are no additions or changes to the existing architecture, adding any feature with

security implications indicates the necessity for design work. The design makes the architecture

buildable. Programmers work from the design. So itôs important that any security requirement or

feature be designed correctly and completely. Security expertise is critical; the purpose of the

design review is to ensure that the appropriate security expertise is applied to the design."

ï Schoenfield, Brook S.E., "Applying the SDL Framework to the Real World," Core

Software Security, Ransome, James, Misra, Anmol, CRC Press, 2014, p. 279

The following graphic illustrates the placement of threat modeling within the activities that are usually

performed while architecting and designing software and systems. Threat modeling is generally not the

only security activity (SDL -- secure development life cycle -- activity) that is performed. It may not be the

first activity.

When threat modeling is the only design-time security activity, its placement is still roughly the same:

early within a development life cycle. Threat modeling is performed when there is sufficient understanding

of the basic structure of the system that it can be threat-modeled. In other words, enough stability to

system/software structure has to be established that threats can be uncovered for that structure, since

each structure and set of integrations will have some uniqueness, some local variation, even in fairly

constrained or highly specified environments. Threat modeling often begins later in the architecting

process or at the beginning of design. It may be thought of as a security "bridge" between architecture

(structure) and design (the specification for what and how to implement).

Figure 1. Architecture task flow when a project is new or a redesign ï Ibid, p. 278

(Note that the graphic above does not depict an entire secure development life cycle nor a complete

software development life cycle, but rather only the portion of a conceptual SDL focused on secure

architecture and design.)

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 16

14. Threat Modeling Examples
The following examples illustrate principles and methodologies described above. They are by no means

complete or exhaustive, and in fact might present some further issues that would serve as interesting

points of discussion and exercise if the reader would like to continue the reasoning and methodologies

sampled. These analyses are not, to the best of the knowledge of the authors, representative of any

specific system, deployed or in development.

14.1. Web-based User Feedback System

We will use this common use case found in web-based systems to illustrate a generic system:

¶ User registers in the system for the first time

¶ User can then log in using the registered username and password

¶ User will enter feedback comments and then log off system

The following data flow diagram represents the use case described above:

Figure 2. DFD for a simple web application

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 17

Using STRIDE, listed here are some of the threats possible against this system, organized by class of

threat:

Spoofing Tampering Repudiation
Information

disclosure

Denial of

service

Elevation of

privilege

The web application

may be spoofed by an

attacker and this may

lead to unauthorized

access to the browser

client. (When

discussed with the

design team, it

appears that this is not

possible, as a security

mechanism to identify

the server is present.)

SQL injection is an

attack in which

malicious code is

inserted into strings

that are later passed

to an instance of SQL

Server for parsing

and execution.

The SQL Database

claims that it did

not write data

received from an

entity on the other

side of the trust

boundary.

Consider using

logging or auditing

to record the

source, time and a

summary of the

received data.

Data flowing across

saved feedback

comments may be

sniffed by an

attacker. Depending

on what type of data

an attacker can

read, it may be used

to attack other parts

of the system or

simply be a

disclosure of

information leading

to compliance

violations. Consider

encrypting the data

flow.

The browser

client crashes,

halts, stops or

runs slowly; in

all cases

violating an

availability

metric.

The browser client

may be able to

impersonate the

context of the web

application in order

to gain additional

privilege.

The SQL Database

may be spoofed by an

attacker, and this may

lead to data being

written to the attacker's

target instead of the

SQL Database. (When

discussed with the

design team, it

appears that this is not

possible, as SQL

connection is made

using the database

username and

password.)

LDAP injection is

possible, as the user

authentication is

verified using an

LDAP query.

The web

application claims

that it did not

receive data from a

process on the

other side of the

trust boundary.

Consider using

logging or auditing

to record the

source, time and a

summary of the

received data.

Improper data

protection of LDAP

can allow an

attacker to read

information not

intended for

disclosure. Review

authorization

settings.

An external

agent prevents

access to a

data store on

the other side of

the trust

boundary.

An attacker may

pass data into the

browser client in

order to change the

flow of program

execution within the

browser client to

the attacker's

choosing.

 Data flowing across

saved feedback

comments may be

tampered with by an

attacker. Failure to

verify that input is as

expected is a root

cause of a very large

number of exploitable

issues. Consider all

paths and the way

they handle data.

Verify that all input is

verified for

correctness using an

approved-list input

validation approach.

LDAP claims that it

did not write data

received from an

entity on the other

side of the trust

boundary.

Consider using

logging or auditing

to record the

source, time and a

summary of the

received data.

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 18

The diagram below is a representation of a sample attack tree, which illustrates the potential

vulnerabilities that could result from exploiting a specific weakness within the application that is being

threat-modeled:

Figure 3. Sample attack tree

Once we have the possible threats, we are able to devise mitigations that will enable us to minimize the

risks associated with the threats.

14.2. Authentication for the Internet of Things (IoT)

In an IoT paradigm, people connect to web services using personal computers, laptops and smartphones,

and control or receive information from a diverse set of devices (things) incorporated in various sections

of our homes, cars, workplaces or even bodies. Such devices (things) can help us to create a more

connected life experience. IoT devices are normally equipped with different types of sensors to gather

information from what happens around us. IoT systems collect this information and provide interesting

insights to users out of the processed data.

An important point about IoT devices is that they are normally less capable than our regular laptops or

even smartphones. Limited resources on the devices and their low power restrictions hinder the usage of

security best-practices, thereby widening the attack surface and the possible threats, as we have seen

with recent DDOS attacks: "How Hacked Cameras Are Helping Launch The Biggest Attacks The Internet

Has Ever Seen" and "Hackers Used New Weapons to Disrupt Major Websites."

http://www.forbes.com/sites/thomasbrewster/2016/09/25/brian-krebs-overwatch-ovh-smashed-by-largest-ddos-attacks-ever/#22d59d226fb6
http://www.forbes.com/sites/thomasbrewster/2016/09/25/brian-krebs-overwatch-ovh-smashed-by-largest-ddos-attacks-ever/#22d59d226fb6
http://www.nytimes.com/2016/10/22/business/internet-problems-attack.html

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 19

Figure 4: A sample IoT architecture

The figure above shows a very common architecture for IoT systems, especially in the domain of home

automation. In a threat-modeling context, it is a high-level DFD that puts together different types of

communication channels between various types of entities involved in an IoT solution.

Authentication is crucial to reduce the number of access possibilities for an attacker to explore. The

authentication concept and the associated threats differ based on the communication channel type, as

follows:

1) Person to device communication channel:

As the number of connected devices increases, it is important to protect them from the threat of access

by unprivileged users. Just think of your smartphones without their authentication capabilities. What if you

could not set any PIN, password or pattern on your smartphone? Anyone close to your phone would be

able to peek at your private photos or read your texts. It is important to use devices that have at least

minimum capabilities for authenticating users. A small keypad to enter a PIN, an enhanced touchscreen

to enter a pattern or a password, or even a fingerprint reader would boost the security of the entire

system by allowing only privileged users to access or control the devices directly. It is also important to

make sure that the default passwords set on the devices are changed during the initial setup by the

users.

2) Device to service communication channel:

One of the major challenges in this layer is the significant increase in the number of connected devices in

the IoT world. Traditional IAM (Identity and Access Management) systems concentrate on people and

managing the access privileges and attributes associated with users. However, in the IoT ecosystem we

have to deal with many more devices that not only send information to the IoT service, but also can

accept control commands from it. It is crucial for IoT systems to be able to handle the increasing number

of devices and establish mutual authentication between the device and the cloud service. Most of the

existing IAM solutions are not scalable enough to address these requirements, thereby posing a

confirmed threat. New types of identity management solutions such as IDoT (Identities of Things --

https://kantarainitiative.org/confluence/display/IDoT/Home) and IRM (Identity Relationship Management --

https://kantarainitiative.org/irmpillars/) attempt to mitigate this threat.

https://kantarainitiative.org/confluence/display/IDoT/Home
https://kantarainitiative.org/irmpillars/

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 20

An implementation challenge in this area is assigning unique identifiers to each device and matching

those identifiers with a specific user during initial setup. Initiatives such as EPC (Electronic Product Code

ï https://en.wikipedia.org/wiki/Electronic_Product_Code) and "ucode system"

(https://en.wikipedia.org/wiki/Ucode_system) are trying to provide unique identifiers for this purpose. A

successful IoT service must be able to deal with these types of identifiers or similar ones and authenticate

each device based on its unique identifier. The unique identifiers should be incorporated in the devices

before their initial setup by users.

For the authentication process, devices can use either symmetric or asymmetric algorithms. In symmetric

authentication, each device is equipped with a cryptographic secret key, other than its unique identifier,

that is shared with the central IoT service. Using the shared secret key, the device and the IoT service

can mutually authenticate each other. For asymmetric authentication, each device and the central IoT

service must be able to deal with Private/Public keys signed by trusted certificate authorities. In both

cases, the devices should protect their unique identifiers and secret keys by storing them on tamper-proof

chips. Not doing so would expose sensitive information that could be readily used by attackers to

authenticate themselves as valid users.

3) Computer (PC, Laptop, Tablet, Smartphone) to service communication channel:

This type of connection is very common in current web-based services, and personal accounts employing

a username/password are commonly used to authenticate the users of a service. Similarly, we can use

the same techniques in our IoT design. We just should make sure we restrict the use of simple

passwords, limit the number of wrong password trials, and provide clear and secure interfaces for

resetting forgotten passwords. These provisions would suitably reduce the account compromise threat

arising because of an authentication control weakness.

4) Service to service communication channel:

In the future connected world that we are heading toward, it will be essential to share information with

other systems and products. Users will not be bound to a single product or manufacturer for all their

needs. Diversity is a crucial factor in being able to scale quickly enough in the IoT world. It is important to

let our users allow third-party services to access their information in our systems with their explicit

consent. For example, users of a third-party health service may want their IoT devices to gather health-

related information and transmit it to that service. Without sharing capabilities, a manufacturer's product

would be secluded from the rest of the IoT ecosystem.

Accordingly, authentication and authorization of third-party services are essential to any IoT system.

Specifically, dominant and robust authentication protocols like OAuth and OpenID, which are widely used

in the web ecosystem, can also be incorporated by any IoT system. These protocols can enhance our IoT

systems so that they can securely authenticate third-party services and control their access to usersô

information by explicitly asking for usersô agreement.

5) Device to device communication channel:

In some cases, our IoT system may have to provide peer-to-peer connections between individual devices.

With respect to authentication, these kinds of communications are challenging to deal with. Our options

are to inject a single shared secret key into all the devices to let them communicate securely or to make

our devices capable of authenticating other devices in the same way as the central IoT. Limited resources

on the IoT devices limit the scenarios for the latter case. However, the first option is also not ideal. The

https://en.wikipedia.org/wiki/Electronic_Product_Code
https://en.wikipedia.org/wiki/Ucode_system

Tactical Threat Modeling

© 2017 SAFECode ï All Rights Reserved. 21

attackers would be able to access any device just by breaking one of them and getting their hands on the

single shared secret key. Most systems avoid these kinds of peer-to-peer connections and require the

devices to communicate through the more capable, central IoT service.

Is that it? No!

Addressing authentication-related threats would significantly reduce the attack surface. But, that is just

one piece of the equation. Post-authentication threat scenarios are equally important. For a low-powered

device such as a refrigerator, here are a few threats along with their potential impacts and mitigation:

1. A government representative's life coming under threat upon reaching home due to his/her

refrigerator being directed to draw excessive power that would lead to a short circuit and a fire;

2. A competitive threat where a vendor hires IoT hackers to change refrigerator temperatures to

make it ineffective: the contents rot, and buyers are left with no other option than to buy a

competing product. Mitigation for (1) and (2): preventing critical field values from the fridge from

being altered in a man-in-the-middle attack;

3. A competitor becoming an authenticated user by buying a device ï this could lead to threats

involving reverse engineering, negation of security-by-obscurity

(https://cwe.mitre.org/data/definitions/656.html), etc.;

4. Hardware threat: back doors that chip manufacturers might be putting in, in the absence of supply

chain assurance.

15. Threat Modeling and Agile Development
Practices

As stated earlier in this document, threat modeling is an activity that belongs to the architectural and

design stages of your SDLC. When using the Agile methodology for software development, the design

stage might not be as clearly defined as it would be when using other development methodologies, such

as Waterfall. Some of the challenges may include trying to fit threat modeling to relatively short sprints.

A pitfall may lie in trying to create threat models for each sprint and then trying to merge them in order to

threat-model the entire system. At the beginning of a set of sprints, not enough is known to threat-model

the whole system, because every sprint may affect the threat model.

In this section, we offer some recommendations on when best to do threat modeling in Agile

development, and how to reduce overhead so as to minimize the impact on your development schedule.

15.1. When To Do Agile Threat Modeling

Even though with the Agile methodology there are often multiple teams working concurrently on different

user stories, there should always be sprint planning for the entire release, where the sprints and user

stories are distributed. Additionally, most people use Sprint Zero to prepare the basic skeleton for the

project. Whether or not Sprint Zero is used, the process of threat modeling should start before Sprint 1.

Specifically, at least a draft threat model should be completed by the time the teams are ready for Sprint

1. Thereafter, while developing user stories within each sprint, you need to be mindful about whether this

https://cwe.mitre.org/data/definitions/656.html

