
Fundamental Practices for
Secure Software Development

A Guide to the Most Effective Secure
Development Practices in Use Today

OCTOBER 8, 2008

Contributors
Gunter Bitz, SAP AG
Jerry Cochran, Microsoft Corp.
Matt Coles, EMC Corporation
Danny Dhillon, EMC Corporation
Chris Fagan, Microsoft Corp.
Cassio Goldschmidt, Symantec Corp.
Wesley Higaki, Symantec Corp.
Michael Howard, Microsoft Corp.

Steve Lipner, Microsoft Corp.
Brad Minnis, Juniper Networks, Inc.
Hardik Parekh, EMC Corporation
Dan Reddy, EMC Corporation
Alexandr Seleznyov, Nokia
Reeny Sondhi, EMC Corporation
Janne Uusilehto, Nokia
Antti Vähä-Sipilä, Nokia

Editor Stacy Simpson, SAFECode

ii

Executive Summary
Software assurance encompasses the development and implementation of methods
and processes for ensuring that software functions as intended while mitigating
the risks of vulnerabilities and malicious code that could bring harm to the end
user. Recognizing that software assurance is a vital defense in today’s increasingly
dynamic and complex threat environment, leading software vendors have under-
taken significant efforts to reduce vulnerabilities, improve resistance to attack and
protect the integrity of the products they sell. These efforts have resulted in signifi-
cant improvements in software security and thus offer important insight into how to
improve the current state of software security.

Through its analysis of the individual software assurance efforts of its members,
SAFECode has identified a core set of secure development practices that can be
applied across diverse development environments to improve software security. It
is important to note that these are the “practiced practices” employed by SAFE-
Code members. By bringing these methods together and sharing them with the
larger community, SAFECode hopes to move the industry beyond defining sets of
often-cited, but rarely-used, best practices to describing sets of software engineer-
ing disciplines that have been shown to improve the security of software and are
currently in common practice at leading software companies. Using this approach
enables SAFECode to encourage the adoption of best practices that are proven to
be both effective and implementable even when different product requirements and
development methodologies are taken into account.

A key goal of this paper is to keep it short, pragmatic and highly actionable. It

prescribes specific security practices at each stage of the development process—

Requirements, Design, Programming, Testing, Code Handling and Documentation—

that can be implemented across diverse development environments.

Software vendors have both a responsibility and business incentive to ensure
product assurance and security. SAFECode has collected, analyzed and released
these security best practices in an effort to help others in the industry to initiate or
improve their own software assurance programs and encourages the industry-wide
adoption of the secure development methods outlined in this paper.

1

 Table of Contents
 Overview 2

 Requirements 3

 Design 4

 Programming 6

 Testing 16

 Code Integrity and Handling 18

 Documentation 19

 Conclusion 19

 About SAFECode 20

2

Overview of Best Practices for Secure
Software Development
There are several different software development methodologies in use today. How-
ever, they all share common elements from which we can build a nearly universal
framework for software development.

A review of the security-related disciplines used by the highly diverse SAFECode
members reveals that there are corresponding security practices for each stage of
the software development lifecycle that can improve software security and integrity,
and are applicable across diverse environments. The examination of these ven-
dor practices reinforces the assertion that software assurance must be addressed
throughout the software development lifecycle to be effective and not treated as a
one-time event or single box on a check list. Moreover, all of these security prac-
tices are currently being used by SAFECode members, a testament to their ability
to be integrated and adapted into real-world development environments even when
unique product requirements are taken into account.

The practices defined in this document are as diverse as the SAFECode member-
ship, spanning web-based applications, shrink-wrapped applications, database
applications as well as operating systems and
embedded systems.

To aid others within the software industry in
adopting and using these software assurance
best practices effectively, this paper describes
each identified security practice across the
software development lifecycle and offers
implementation advice based on the experi-
ences of SAFECode members.

This paper describes each

identified security practice

across the software devel-

opment lifecycle and offers

implementation advice

based on the experiences

of SAFECode members.

3

Requirements
During requirements definition, a set of activities
is defined to formalize the security require-
ments for a specific product release. These
practices identify functional and non-functional
requirements, and include conducting a product
or code-specific risk assessment, identifying
specific security requirements to address the
identified risks, and defining the security
development roll-out plan for that release.
The product development team first identifies
security requirements from use cases, cus-
tomer inputs, company policy, best practices
and security improvement goals. Then, the
team prioritizes security requirements based
on threat and risk levels such as threats to
code integrity, intellectual property protection,
personally-identifiable information (PII) or sen-
sitive data, features that require admin/root
privileges and external network interfaces.

The security engineering requirements help
drive design, programming, testing, and code
handling activities similar to those outlined
in the rest of this document. It is also use-
ful to review security requirements that were
“deferred” from the previous release and priori-
tize them with any new requirements.

During requirements definition, it is important
that the product managers and other business
leaders who allocate resources and set sched-
ules are aware of the need to account for time
to engage in secure development practices.

Awareness training and “return on investment”
arguments help present the business case for
secure development. It is important that these
decision-makers understand the risks that their
customers will have to accept should too little
effort be put into secure development.

In preparation for each product release, the
development and QA staff members should
be trained in secure development and testing.
Training goals help track and drive improve-
ment in this area.

The security requirements
cover areas such as:

Staffing requirements (background •
verification, qualifications, training
and education, etc.)

Policy on disclosure of information •
and project confidentiality

Authentication and password •
management

Authorization and role management•

Audit logging and analysis•

Network and data security•

Third party component analysis•

Code integrity and validation testing•

Cryptography and key management•

Data validation and sanitization•

Serviceability•

Ongoing education and awareness•

4

Design
The single secure software design practice used across SAFECode members is
threat analysis, which is sometimes referred to as “threat modeling” or “risk analy-
sis.” Regardless of the name, the process of understanding threats helps elevate
potential design issues that are usually not found using other techniques such as
code reviews and static source analyzers. In essence, threat analysis helps find
issues before code is committed so they can be mitigated as early as possible in
the software development lifecycle. For example, rather than wait for an analysis
tool to potentially find injection vulnerabilities, it’s better for a development team
to realize that their product may be vulnerable to these issues and put in place
defenses and coding standards to reduce the risk from the start.

If an organization does not have expertise in building threat models, a free-form
discussion is better than not thinking at all about potential application weaknesses.
Such “brainstorming” should not be considered a complete solution, and should
only serve as a stepping stone to a more robust threat analysis method.

The risk of not doing an adequate job of identifying architectural and design security
flaws is that customers, researchers or attackers may find these flaws which would
then require a major upgrade or re-architecture effort to mitigate the resulting
vulnerability—an extremely costly venture.

Some SAFECode members have adopted “misuse cases” to help drive their under-
standing of how attackers might attack a system.

To get the full benefit of threat modeling while designing the software, software
designers and architects should strive to mitigate any identified issues before
moving beyond design whenever possible. Comprehensive treatment of mitigation
techniques is beyond the scope of this paper, but most secure design practices
today are based on the fundamental work by Saltzer and Schroeder.

SAFECode members also recommend selecting standard, proven security toolkits,
such as cryptographic and protocol libraries, during the requirements or design
phase and advise development groups to avoid building their own security tech-
nologies and protocols.

5

Resources
The Security Development Lifecycle.• Chapter 9, “Stage 4: Risk Analysis”
Microsoft Press, Howard & Lipner.

The Protection of Information in Computer Systems. • Proceedings of the IEEE,
63(9):1278–1308, September 1975. J.H. Saltzer and M.D. Schroeder.

Software Security Assurance: State-of-the-Art Report. • Section 5.2.3.1,
“Threat, Attack, and Vulnerability Modeling and Assessment” Information
Assurance Technology Analysis Center (IATAC), Data and Analysis Center for
Software (DACS).

Security Mechanisms for the Internet. • Bellovin, Schiller, Kaufman;
ftp://ftp.rfc-editor.org/in-notes/rfc3631.txt

Capturing Security Requirements through Misuse Cases• , Sindre and Opdahl;
http://folk.uio.no/nik/2001/21-sindre.pdf

6

Programming

Throughout programming, the following practices
are used across the majority of SAFECode members:

Minimize unsafe function use•

Use the latest compiler toolset•

Use static and dynamic analysis tools •

Manual code review•

Validate input and output•

Use anti-cross site scripting libraries•

Use canonical data formats•

Avoid string concatenation for dynamic SQL •

Eliminate weak cryptography •

Use logging and tracing•

These practices are detailed on the following pages.

7

Minimize unsafe function use
Buffer overrun vulnerabilities are a common
and easy-to-introduce class of vulnerability
that primarily affects C and C++. An analysis
of buffer overrun vulnerabilities over the last
ten years shows that a common cause is using
unsafe string- and buffer-copying C runtime
functions. Functions such as, but not limited
to, the following function families are actively
discouraged by SAFECode members in new C
and C++ code, and should be removed over
time from older code.

Development engineers can be trained to avoid
using these function calls, but using tools to
search the code for these calls helps validate the
training efforts and identify problems in legacy
code. Building the execution of these tools into
the “normal” compile/build cycles relieves the
developers from having to take “special efforts”
to meet these goals.

Finally, it is important to be aware of library
or operating system specific versions of these
functions. For example Windows has a func-
tional equivalent to strcpy called lstrcpy and
Linux has strcopy, to name but a few, and these
too should be avoided.

Resources
Security Development Lifecycle (SDL) Banned Function Calls; •
http://msdn.microsoft.com/en-us/library/bb288454.aspx

strlcpy and strlcat—Consistent, Safe, String Copy and Concatenation, Miller & de Raadt; •
http://www.usenix.org/events/usenix99/millert.html

Function Families to Remove:

strcpy family•

strncpy family•

strcat family•

strncat family•

scanf family•

sprint family•

gets family•

8

When possible, use the latest compiler toolset to take
advantage of compile-time and run-time defenses
As previously noted, a very common and dangerous type of vulnerability that primarily affects
code written in C or C++ is the buffer overrun. It is easy to fix most buffer overrun vulnerabilities
by moving to languages other than C and C++, but that is much harder to do in practice because
for many classes of software, C and C++ are the perfect languages for the job. Because many
vulnerabilities in C and C++ are serious, it is important to use C and C++ compilers that offer
compile-time and run-time defenses against buffer overruns automatically. Examples include:

Microsoft Visual C++ 2005 SP1 and later offers:

/GS for stack-based buffer overrun defenses •

/DYNAMICBASE for image and stack randomization•

/NXCOMPAT for CPU-level No-eXecute (NX) support•

/SAFESEH for exception handler protection•

Warning C4996 for insecure C runtime function detection and removal•

gcc 4.1.2-251 and later offers:

–fstack-protector for stack-based buffer overrun defenses•

–Wl, –pie for image randomization•

–D_FORTIFY_SOURCE=2 and –Wformat-security for insecure C runtime function detection •
and removal

Development teams can decide to use these compiler flags on every compile session or on selected
sessions depending on their individual circumstances. It is important that any errors generated by
these complies are analyzed and addressed.

1 Not all versions of gcc on all platforms offer all defenses. Also, Apple has
backported some defenses to gcc 4.01 on the Macintosh OS X platform.

Resources
Protecting Your Code with Visual C++ Defenses; •
http://msdn2.microsoft.com/en-us/magazine/cc337897.aspx

Object size checking to prevent (some) buffer overflows; •
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html

Exploit Mitigation Techniques; •
http://www.openbsd.org/papers/ven05-deraadt/index.html

9

Use static and dynamic code analysis tools to aid
code review process to find vulnerabilities
Source code and binary analysis tools are now becoming commonplace, and the use of such tools
is highly recommended to find common vulnerability types. These tools are adjunct to manual code
review, not a replacement.

The state-of-the-art of these tools requires that developers analyze sometimes voluminous results
that may contain many false positives. Considerable tuning may be required to get the most ben-
efit from these tools. It also seems that tools from different vendors catch different types of issues;
that is, no one tool today finds all faults. There is some up-front investment required to get the
greatest benefit from these tools, but the effort is worthwhile.

Resources
The Security Development Lifecycle. • Chapter 21, “SDL-Required Tools and Compiler Options”
Microsoft Press, Howard & Lipner.

Detecting and Correcting C/C++ Code Defects; •
http://msdn.microsoft.com/en-us/library/ms182025.aspx

Using Static Analysis for Software Defect Detection; •
http://video.google.com/videoplay?docid=-8150751070230264609

FxCop; • http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx

List of tools for static code analysis; •
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

Static Analysis Tools; • http://www.securityinnovation.com/pdf/si-report-static-analysis.pdf

10

Manually review code after security education
Manual code review, especially review of high-risk code, such as code that faces the
Internet or parses data from the Internet, is critical, but only if the people perform-
ing the code review know what to look for and how to fix any code vulnerabilities
they find. The best way to help understand classes of security bugs and remedies
is education, which should minimally include the following areas:

C and C++ vulnerabilities and remedies, most notably buffer overruns and •
integer arithmetic issues.

Web-specific vulnerabilities and remedies, such as cross-site scripting (XSS). •

Database-specific vulnerabilities and remedies, such as SQL injection.•

Common cryptographic errors and remedies.•

Many vulnerabilities are programming language (C, C++ etc) or domain-specific
(web, database) and others can be categorized by vulnerability type, such as injec-
tion (XSS and SQL Injection) or cryptographic (poor random number generation
and weak secret storage) so specific training in these areas is advised.

Resources
A Process for Performing Security Code Reviews, Michael Howard, •
IEEE Security & Privacy July/August 2006.

.NET Framework Security — Code Review; •
http://msdn.microsoft.com/en-us/library/aa302437.aspx

Common Weakness Enumeration• , MITRE; http://cwe.mitre.org/

Security Code Reviews; •
http://www.codesecurely.org/Wiki/view.aspx/Security_Code_Reviews

Security Code Review — Use Visual Studio Bookmarks To Capture •
Security Findings; http://blogs.msdn.com/alikl/archive/2008/01/24/security-
code-review-use-visual-studio-bookmarks-to-capture-security-findings.aspx

Security Code Review Guidelines, Adam Shostack; •
http://www.verber.com/mark/cs/security/code-review.html

OSWASP Top Ten; • http://www.owasp.org/index.php/OWASP_Top_Ten_Project

11

Validate input and output to mitigate common vulnerabilities
Simply checking the validity of incoming data and rejecting non-conformant data
can remedy the most common vulnerabilities. In some cases checking data validity
is not a trivial exercise, but is critically important to understanding the format of
incoming data to make sure it is correct. For text- and XML-based data, software can
use regular expressions or string comparisons for validation. Binary data is harder
to verify, but at a minimum, code should verify data length and field validity.

In some applications types, notably web-based applications, validating and/
or sanitizing output is important and can help mitigate classes of vulnerabilities
such as cross-site scripting, HTTP response splitting and cross-site request forgery
vulnerabilities.

Use anti-cross site scripting (XSS) libraries
As a defense-in-depth measure, using anti-XSS libraries is very useful. In its sim-
plest form, a minimal anti-XSS defense is to HTML encode all web-based output
that may include untrusted input; however, more secure libraries also exist, such
as those in the resources section below.

Resources
Writing Secure Code 2nd Ed. • Chapter 10, “All Input is Evil!” Michael Howard
& David LeBlanc, Microsoft Press.

ASP.NET Input and Data Validation; •
http://wiki.asp.net/page.aspx/45/input-and-data-validation/

Resources
OWASP PHP AntiXSS Library; • http://www.owasp.org/index.php/
Category:OWASP_PHP_AntiXSS_Library_Project

Microsoft Anti-Cross Site Scripting Library V1.5: Protecting the Contoso •
Bookmark Page, Kevin Lam;
http://msdn.microsoft.com/en-us/library/aa973813.aspx

12

Use canonical data formats
Where possible, applications that use resource names for filtering or security
defenses should use canonical data forms. Canonicalization describes the mecha-
nisms to derive a canonical expression from different polymorphic expressions. For
example, within the context of a search engine, the data file ‘Hello World.doc’ may
be accessible by any one of the following polymorphic links:

http://www.site.com/hello+world.doc
http://www.site.com/hello%20world.doc
http://www.site.com:80/hello%20world.doc

The canonical representation ensures that the various forms of an expression (for
example, URL encoding or Unicode escapes) do not bypass any security or filter
mechanisms. A polymorph representation of data is not necessarily an attack in
itself, but may help to slip malicious data past a filter or defense by “disguising” it.
There are many canonicalization vulnerabilities, including, path traversal and URL
bypass.

Resources
Writing Secure Code 2nd Ed. • Chapter 11, “Canonical Representation Issues”
Michael Howard & David LeBlanc, Microsoft Press.

OWASP Canonicalization, Locale and Unicode; •
http://www.owasp.org/index.php/Canonicalization%2C_locale_and_Unicode

How to programmatically test for canonicalization issues with ASP.NET; •
http://support.microsoft.com/kb/887459

13

Avoid string concatenation for dynamic SQL statements
Building SQL statements is common in database-driven applications. Unfortunately
the most common way and the most dangerous way to build SQL statements is to
concatenate untrusted data with string constants to build SQL statements. Except
in very rare instances, string concatenation should not be used to build SQL state-
ments. Rather, developers should use SQL placeholders or parameters to build SQL
statements securely. Different programming languages, libraries and frameworks
offer different functions to create SQL statements using placeholders or parameters.
As a developer it is important to understand how to use this functionality correctly.

Resources
Giving SQL Injection the Respect it Deserves, Michael Howard; •
http://blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-
the-respect-it-deserves.aspx

14

Eliminate weak cryptography
Over the last few years, serious weaknesses
have been found in many cryptographic algo-
rithms. Weak security controls in general should
be avoided, whether the weaknesses are in
authentication, authorization, logging, encryp-
tion or data validation/sanitization.

Only proven algorithms and implementations
should be used. US Federal government custom-
ers require FIPS 140-2 validation for products
using cryptography. FIPS 140-2 defines a set
of algorithms that have been determined to
be sound. Vendors also need to consider cryp-
tographic export restrictions, but FIPS 140-2
provides a sound standard to consider.

Resources
The Security Development Lifecycle. • Chapter 20, “SDL Minimum Cryptographic Standards”
Microsoft Press, Howard & Lipner.

National Institute of Standards and Technology (NIST) Federal Information Processing •
Standard (FIPS) 140-2; http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

Public-Key Cryptography Standards (PKCS); • http://www.rsa.com/rsalabs/node.asp?id=2124

Public-Key Infrastructure (X.509) (pkix); • http://www.ietf.org/html.charters/pkix-charter.html

The following algorithms and
cryptographic entities should be

treated as insecure:

Embedded private data, passwords, •
keys or key material.

MD4•

MD5•

SHA1 •

Symmetric keys less than 128-bits •
long (that means DES is too weak as
it supports only a 56-bit key).

Use of stream ciphers (such as ARC •
and RC4) is discouraged owing to
subtle weaknesses in the way stream
ciphers are often used.

Any cryptographic algorithm you •
have invented yourself or has not
been subject to academic peer
review.

Block ciphers using Electronic Code •
Book (ECB) mode.

15

Use logging and tracing
Logging and tracing are important elements for securing, monitoring and debug-
ging applications.

Administrators are the main users of the logging system and traces are used by
developers and the support organization. Logging systems should record data
that pertains to the normal operation of the system including successful and failed
events. Tracing systems should record data that might help pinpoint a bug in the
system.

It is critically important that logs and trace files do not contain sensitive data such
as passwords.

Resources
OWASP Reviewing Code for Logging Issues; •
http://www.owasp.org/index.php/Reviewing_Code_for_Logging_Issues

OWASP Error Handling, Auditing and Logging; •
https://www.owasp.org/index.php/Error_Handling%2C_Auditing_and_Logging

16

Testing
Testing activities validate the secure implementation of a product, which reduces
the likelihood of security bugs being released and discovered by customers and/or
malicious users. The majority of SAFECode members have adopted the following
software security testing practices in their software development lifecycle. The goal
is not to “test in security,” but rather to validate the robustness and security of
the software products prior to making the product available to customers. These
testing methods do find security bugs, especially for products that may not have
undergone critical secure development process changes.

Fuzz testing
Fuzz testing is a reliability and security testing technique that relies on building
intentionally malformed data and then having the software under test consume the
malformed data to see how it responds. The science of fuzz testing is somewhat
new but it is maturing rapidly. There is a small market for fuzz testing tools today,
but in many cases software developers must build bespoke fuzz testers to suit spe-
cialized file and network data formats. Fuzz testing is an effective testing technique
because it uncovers weaknesses in data handling code.

Resources
Fuzz Testing of Application Reliability, University of Wisconsin; •
http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html

Automated Whitebox Fuzz Testing, Michael Levin, Patrice Godefroid and •
Dave Molnar, Microsoft Research;
ftp://ftp.research.microsoft.com/pub/tr/TR-2007-58.pdf

IANewsletter Spring 2007 “Look out! It’s the fuzz!” Matt Warnock; •
http://iac.dtic.mil/iatac/download/Vol10_No1.pdf

Fuzzing: Brute Force Vulnerability Discovery. • Sutton, Greene & Amini,
Addison-Wesley.

Open Source Security Testing Methodology Manual.• ISECOM.

Common Attack Pattern Enumeration and Classification, • MITRE;
http://capec.mitre.org/

17

Penetration testing and
third-party assessment
The goal of penetration testing is to find secu-
rity issues in an application by applying testing
techniques usually employed by attackers.
Some SAFECode members have dedicated
penetration testing teams while others employ
external penetration and security assessment
companies. Some SAFECode members use
both in-house and external security penetration
expertise. Internal QA teams should perform
security testing along with standard functional
testing as part of a comprehensive test plan.

While there is significant value in having an
objective analysis of the security of the system,
it is important to realize that a penetration test
cannot make up for an insecure design or poor
development and testing practices.

The advantage of using competent, third-party
penetration testers is their breadth of expe-
rience. The challenge is finding third-party
testers that will do a complete job for your spe-
cific product type, architecture or technologies.
Developing an in-house penetration team has
the advantage of maintaining internal product
knowledge from one test to the next. However,
it takes time for an internal team to develop
the experience and skill sets to do a complete
penetration testing job and penetration testing
should be prioritized after secure design and
coding and other security testing measures.

Use of automated testing tools
Automation at all stages of the development
process is important because automation can
tirelessly augment human work. During test-
ing, the most common tools used by SAFECode
members include:

Fuzzing tools•

Network vulnerability scanners•

Web application vulnerability scanners•

Packet analyzers •

Automated penetration testing tools •

Network/web proxies that manipulate •
network data

Protocol analysis•

Anti-malware detection on final media•

The first three help development teams look for
code vulnerabilities, and the last helps to verify
that the final executable images are free from
known malicious code.

18

Code Integrity and Handling
Software integrity and code handling practices
increase confidence in software products and
applications by reducing the risk of malicious
code being present. The principles outlined
below exist in the context of other IT functions
such as backup and recovery, business continu-
ity services, physical and network security and
configuration management systems.

These practices derive from established integ-
rity principles:

Least Privilege Access•

Separation of Duties•

Chain of Custody and Supply Chain Integrity•

Persistent Protection•

Compliance Management•

In this context software integrity practices
address access, storage and handling during
software development processes which include
procurement, code and test, build, release and
distribution. Controls must be in place to assure
the confidentiality, integrity and availability of
code throughout its lifecycle (including across
the supply chain).

Source code should be kept in well protected •
source code control systems (Repositories,
Build Systems, Software Configuration
Management) with strong authentication
and role-based access control following the
principle of “least privilege.”

The chain of custody of code throughout its •
lifecycle should be verifiable to establish
the origin of each change made during the
source code’s lifetime.

Code should be protected while active, at •
rest and in transit to obstruct attempts to
tamper with code, and when they occur
changes are evident and reversible.

Event and audit logs generated by applica-•
tions and network devices should be closely
monitored and analyzed. Done correctly and
consistently, log analysis is a reliable and
accurate way to discover potential threats
and identify malicious activity. In addition
to malicious attacks, event and audit log
management can highlight administrative
actions performed by well-meaning IT staff
that have unintended consequences.

Code should be verifiable for its integrity •
and authenticity by consumers (e.g. signed
code).

Bugs in code that create vulnerabilities •
must be resolved promptly and continu-
ously throughout code’s lifecycle (including
throughout its sustainment phase).

19

Documentation
Before deploying software, administrators must
understand the security posture of the soft-
ware; this might include knowing which ports
to allow through a firewall, or operating system
changes to make the software work correctly.

An issue that many customers have requested
is more information on how to securely con-
figure their software either “out of the box” or
using wizards or more documentation for given
environments.

Documentation defining the software security
best practices is the prime source of informa-
tion for administrators. The documentation
can be as simple as a set of “Do’s and Don’ts”
or as complete as a large book defining every
possible security setting and the security and
usability implications of those settings.

Conclusion
Improving software security requires software
development process improvements along
the entire software development timeline, not
just random one-time events or simple code
review. SAFECode members recognize this and
have adopted a core set of improvements that
demonstrably improve security. It is recom-
mended that all software vendors, irrespective
of target operating system, customer type or
development environment adopt the practices
laid out in this document.

About SAFECode
The Software Assurance Forum for Excellence in

Code (SAFECode) is a non-profit organization exclu-

sively dedicated to increasing trust in information

and communications technology products and ser-

vices through the advancement of effective software

assurance methods. SAFECode is a global, industry-

led effort to identify and promote best practices for

developing and delivering more secure and reliable

software, hardware and services. Its members

include Adobe Systems Incorporated, EMC Corpora-

tion, Juniper Networks, Inc., Microsoft Corp., Nokia,

SAP AG and Symantec Corp. For more information,

please visit www.safecode.org.

© 2008 Software Assurance Forum for Excellence in Code (SAFECode)

(p) 703.812.9199

(f) 703.812.9350

(email) stacy@safecode.org

www.safecode.org

SAFECode

2101 Wilson Boulevard

Suite 1000

Arlington, VA 22201

