
© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of
Cloud Applications

PRIMARY AUTHORS:
Bryan Sullivan, Microsoft
Said Tabet, EMC
Edward Bonver, Symantec
Judith Furlong, EMC
Steve Orrin, Intel
Peleus Uhley, Adobe Systems, Inc.

DECEMBER 5, 2013

2

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

I. Foreword�� 3
Methodology and Scope��� 3

II. Threats to Cloud Computing�� 5
Data Breaches�� 5

Data Leakage and Data Loss��� 5

Insecure Interfaces and APIs��� 6

Denial of Service�� 6

References�� 7

III. Design Issues��� 8
Multitenancy�� 8

Description�� 8

Action Items�� 9

CSA Reference��10

References���10

Trusted Compute Pools���10

Description��10

 Action Items���12

CSA Reference��12

References���12

Tokenization of Sensitive Data���13

Description��13

Action Items��14

CSA Reference��15

References���15

Data Encryption and Key Management���15

Description ���15

Action Items��17

CSA Reference��18

References���18

Authentication and Identity Management������������������������������������18

Description ���18

Action Items��19

CSA Reference��19

References���20

IV. Implementation Issues��21
Shared-Domain Issues���21

Description��21

Action Items��22

CSA Reference��22

References���22

Securing APIs���22

Description��22

Action Items��24

CSA Reference��24

References���24

V. Summary of Design and Implementation Action Items����25

VI. Moving Industry Forward ��26

Table of Contents

3

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

I. Foreword
The emergence of cloud computing as a new paradigm brings with it a lot of challenges and
issues that require close attention by the industry. While information technology continually
goes through changes, cloud computing is one of the most significant, bringing new
innovation and with it new requirements. For cloud computing to reach its true potential,
all parties involved – both consumers and providers – will need new ways of thinking about
security needs and related standards. Cloud consumers have legitimate concerns about
security risk related to cloud computing, including those related to the ‘outsourcing’ of
the security of their information systems. Cloud service providers are working to provide
solutions and ways to mitigate such risks. A cohesive and common approach is only just
beginning to emerge. Research being conducted by the Cloud Security Alliance (CSA),
the National Institute for Standards and Technology (NIST), and standards development
organizations such as ISO, ITU-T and others, is helping to bridge the gaps.

At the same time, the recognition that security must be addressed throughout the software
development lifecycle has grown alongside industry efforts to advance the current state
of software security. The Software Assurance Forum for Excellence in Code (SAFECode) is
one industry-led organization working to identify and promote best practices for secure
software development. In the five years since SAFECode released its flagship work identifying
fundamental secure development practices, the process of building secure software
has continued to evolve alongside innovations and advancements in the information
and communications technology industry. One key question is how the emergence and
maturation of cloud computing has impacted the security development lifecycles of leading
technology providers.

To address this question, SAFECode and CSA partnered to determine whether additional
software security guidance was needed to address unique threats to the cloud computing,
and if so, to identify specific security practices in the context of identified threats. This
report represents the product of that collaboration and is intended to help readers better
understand and implement best practices for secure cloud software development.

Methodology and Scope

SAFECode and CSA created a working group with practical experience in both cloud and
software security. The team reviewed existing secure software development practices
and secure design considerations as outlined in the SAFECode publication “Fundamental
Practices for Secure Software Development 2nd Edition” in the context of CSA cloud security
guidance, including its paper, “The Notorious Nine: Cloud Computing Top Threats in 2013.”

While the working group’s efforts confirmed that each practice identified by SAFECode
as fundamental to software security applied equally to cloud software, it did identify
additional practices that should be adopted by those developing software for the cloud
given the unique threats faced in that domain. As such, this paper should not be considered
a replacement for SAFECode’s “Fundamental Practices for Secure Software Development”
document, but rather as a supplement to it that provides additional secure development
recommendations in the context of critical threats specific to cloud computing.

The working group focused its efforts on analyzing security considerations for Platform
as a Service (PaaS) model of cloud computing. This seemed like the most logical starting
point given that PaaS is often the intersection between the Infrastructure as a Service (IaaS)
and Software as a Service (SaaS) models. The Platform runs on an infrastructure that needs

This paper should not be
considered a replacement
for SAFECode’s “Fundamental
Practices for Secure Software
Development” document,
but rather as a supplement
to it that provides additional
secure development
recommendations in the
context of critical threats
specific to cloud computing.

Now in its second edition, SAFECode’s
flagship paper, Fundamental Practices
for Secure Software Development: A
Guide to the Most Effective Secure
Development Practices in Use Today,
provides a foundational set of secure
development practices that should be
applied during the design, development
and testing activities in the software
development lifecycle. The practices
identified and explained in the report
have been shown to be effective in
improving software security in real-
world implementations by SAFECode
members even across diverse
development environments. The full
report can be downloaded at no cost by
visiting www.safecode.org.

http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org

4

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

to provide security protections and security services to the PaaS. Additionally, SaaS and
application developers will rely on the PaaS to provide them with security features, APIs and
services. Given this relationship, much of the guidance provided in this paper is relevant to
the application or services layers, even though the primary target of work is PaaS security.

Just as in traditional software development practices, it is crucial to consider security at
each layer and at each step of the development lifecycle. Accordingly, the target audience
for this document includes not only software developers, software and security architects
and designers, but also managers and IT leads who need to be aware of both the risks and
mitigations this document describes.

To aid others in adopting and using these practices effectively, this paper describes each
identified security practice in the context of the unique attributes of cloud computing and
the associated threats as identified by CSA. We have mapped our recommended practices
to specific threats in order to provide a more detailed illustration of the security issues these
practices aim to resolve and a starting point for those wishing to learn more. Each section
offers specific action items for development and security teams, as well as useful references
that provide additional implementation guidance.

5

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

II. Threats to Cloud Computing
In order to develop secure software, it is crucial for development teams to model potential
threats to their applications and to implement mitigations to those threats. Developing for
a PaaS cloud environment exposes certain unique risks that development teams need to
understand and address. In this section, we will describe some of these risks to provide a
clearer picture of the security issues our recommendations aim to help mitigate. While many
of these threats extend to both the Infrastructure and Software layers, we’ve focused this
section on those most relevant to the Platform layer.

Data Breaches

Readers may be familiar with the attack technique known as “SQL injection,” in which
attackers can manipulate SQL queries, for example in order to extract the credit card
numbers of all customers in a database1. As damaging as SQL injection attacks can be against
web applications, their consequences in multitenant cloud environments can be even worse.
If multiple applications share the same underlying database system, a flaw in any one of the
clients’ applications could potentially put all of the other customers’ data at risk. Broadening
the credit card theft example, in a cloud environment an attacker might be able to extract
the credit card numbers of all the customers whose data happens to be located in an
underlying database that is shared among multiple clients of the same cloud provider.

In another, more complex example, researchers have demonstrated that they could extract
private cryptographic keys from co-hosted virtual machines using a side-channel attack
(http://arstechnica.com/security/2012/11/crypto-keys-stolen-from-virtual-machine/).
Additionally, current trends in malware and attack techniques have malicious actors
targeting lower levels of the stack such as hypervisors, virtual infrastructure and BIOS. In co-
hosted environments, compromised virtual infrastructure and BIOS’s pose a serious threat to
the data and applications running on co-tenant cloud PaaS infrastructure.

Data Leakage and Data Loss

Data needs to be protected in transit and at rest. Protecting data in transit might
mean securing the communication channel between physical systems (e.g., server-to-
server or server-to-client), physical resources on any given machine (e.g., interprocess
communications), virtual machines, virtual network interfaces, etc. When it comes to virtual
machines, the development team needs to be aware of additional threats, such as VM escape
(vulnerabilities in the hypervisor that let attackers take control over the VM’s underlying
infrastructure), VM hopping (when vulnerabilities in the hypervisor let attackers gain access
from one virtual machine to another one that they do not own), and insecure VM migration
(where, for example, an attacker can force the VM to migrate to an untrusted host that they
have control over, or can access data illegally during the migration process).

When data is kept in the cloud, the system needs to be designed, implemented, and
deployed so that it can withstand attacks on various levels in the multi-tier architecture. One
of the most obvious examples is if an attacker breaks in and modifies or deletes data (i.e.,

1	 If you are unfamiliar with SQL injection, please refer to the SAFECode publication “Fundamental
Practices for Secure Software Development 2nd Edition”; particularly the sections “Avoid String
Concatenation for Dynamic SQL Statements” and “Validate Input and Output to Mitigate Common
Vulnerabilities.”

The Notorious Nine: Cloud Computing
Top Threats in 2013 aims to provide
organizations with up-to-date, expert-
informed understanding of cloud
security threats in order to make
educated risk-management decisions
regarding cloud adoption strategies.

While there are many risks associated
with the cloud in general, this report
focuses on threats specifically related to
the shared, on-demand nature of cloud
computing. It serves as an up-to-date
threat identification guide that will
help cloud users and providers make
informed decisions about risk mitigation
within a cloud strategy.

http://arstechnica.com/security/2012/11/crypto-keys-stolen-from-virtual-machine/
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf

6

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

attack on the integrity of data). In this case, is it possible to trace what happened during the
attack, roll back malicious actions and/or restore from a backup? If restore operations need
to be performed, which entity is responsible for maintaining the backups (e.g., is it the cloud
provider) and can the integrity of backups be guaranteed? Going beyond tracing the attack,
were the logs maintained in accordance with privacy protection laws, which differ from
country to country, and depending on where and how the application is deployed? Which
country’s privacy laws would apply in this case?

Using encryption in order to protect confidentiality of data seems like a logical choice;
however, encryption presents its own set of challenges, such as key management, correct
use of crypto algorithms and libraries, and again, country-specific laws. Here, new questions
arise: at which layer(s) should encryption be performed? Who is in charge of the keys? How
can data be accessed when a key is lost? What if a key gets compromised?

Some of the responsibilities may lie on the provider’s side, some on the operational side,
while others lie on the development team’s side. For example, a provider might be in charge
of storing VM snapshots. Are those snapshots stored securely (is proper authentication and
authorization in place)? Is data confidentiality preserved throughout the VM’s lifecycle?

Insecure Interfaces and APIs

Quite frequently as part of cloud services, a cloud provider exposes a set of interfaces or APIs
that allows their customers to perform various operations (e.g., monitoring, provisioning,
management, etc.) Much of the security of the system depends on whether those APIs are
designed properly (e.g., access control, authentication, etc.), and if they are used correctly
by customers. In this case correct usage can be expressed as following the provider’s
instructions and by following best practices associated with using such APIs in distributed/
cloud environments. Special care needs to be taken when using such APIs, especially given
the fact that there might be multiple layers of APIs, as third-parties are known to extend APIs
and build new services on top of them.

Denial of Service

In cloud environments, denial of service attacks might occur at various layers. Examples
include attacks on the cloud provider’s systems (virtual machines, memory, disk space,
network, database tier, etc.).

Generally speaking, the more layers that are introduced in an architecture, the more attack
surface is also introduced. This is particularly true for denial of service attacks compared
to other attacks such as data theft or elevation of privilege. For example, it might be very
difficult for an attacker to exfiltrate data from a database component that resides many layers
deep in the architecture. However, a denial of service attack against any single layer – such
as forcing a backend NoSQL database into an infinite loop by sending a malformed query,
or causing an XML configuration file parser to hang by sending it a “billion laughs attack”
exponential entity expansion – may be sufficient to take down the entire system.

It is important to leverage resources, capacity and defenses that might be offered by cloud
providers. Examples include load balancing, traffic management, active failover, scaling,
backup, etc.

7

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

References

•	 The Notorious Nine: Cloud Computing Top Threats in 2013; Cloud Security Alliance;
February 2013
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_
Cloud_Computing_Top_Threats_in_2013.pdf

•	 Journal of Internet Services and Applications; An analysis of security issues for cloud
computing; Keiko Hashizume, David G Rosado, Eduardo Fernández-Medina and Eduardo B
Fernandez; 2013
http://www.jisajournal.com/content/pdf/1869-0238-4-5.pdf

•	 Ars Technica; Virtual machine used to steal crypto keys from other VM on same server; Dan
Goodin; Nov. 6, 2012
http://arstechnica.com/security/2012/11/crypto-keys-stolen-from-virtual-machine/

•	 Fundamental Practices for Secure Software Development 2ND EDITION: A Guide to the Most
Effective Secure Development Practices in Use Today; SAFECode; February 8, 2011
www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf

•	 Cloud Security: Attacks and Current Defenses (by Gehana Booth, Andrew Soknacki, and Anil
Somayaji) from the 8th Annual Symposium on Information Assurance (ASIA’13)
http://www.albany.edu/iasymposium/proceedings/2013/16-BoothSoknackiSomayaji.pdf

https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
http://www.jisajournal.com/content/pdf/1869-0238-4-5.pdf
http://arstechnica.com/security/2012/11/crypto-keys-stolen-from-virtual-machine/
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.albany.edu/iasymposium/proceedings/2013/16-BoothSoknackiSomayaji.pdf

8

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

III. Design Issues

Multitenancy

Description

One of the key distinguishing features of cloud computing is multitenancy. Multitenancy
allows multiple consumers or tenants to maintain a presence in a cloud service provider’s
environment, but in a manner where the computations and data of one tenant are isolated
from and inaccessible to another tenant. In a multitenant environment:

•	 No tenant should be able to identify or determine the existence of other tenants;
•	 No tenant should have access to the data of another tenant;
•	 No tenant should be able to perform an operation that affects the operation of or

denies service to another tenant;
•	 Configuration for each tenant should be independent from that of another tenant;
•	 Auditing and tracing should be provided on a per tenant basis; and
•	 Provisioning and decommissioning of tenants should be done in a manner that

enforces tenant segregation.

Multitenancy has architectural and design impacts on the cloud service provider’s
environment and on the applications that run in multitenant environments.

From a cloud service provider perspective, the fundamental design principle for
multitenancy is “logically separate, but physically shared.” To tenants, the cloud service
provider’s environment must appear to provide a logical separation among tenants, but in
fact the underlying infrastructure used by the cloud service provider is typically physically
shared among tenants. In order to offer secure service to its tenants, the cloud service
provider needs to employ physical, technical and procedural means to secure the underlying
infrastructure from attackers. The provider will also rely upon specific software and hardware
components within the infrastructure to provide multitenant capabilities such as the
processing and segregation of tenant information. Other components may exist within the
provider’s infrastructure, but not be trusted to provide tenant segregation on their own.
For example, the infrastructure may include shared storage, but the data from multiple
tenants stored within it may be encrypted (a key per tenant) prior to being written to this
shared storage.

Multitenancy considerations also influence how the cloud service provider provisions
tenants into their environment and the type of service interfaces that they provide to their
tenants. Most cloud service providers offer a range of services to their customers, each with
its own associated policies and Service Level Agreements (SLAs). It may not be technically
feasible or cost effective to provide a full range of multitenant offerings on a single
infrastructure. Instead, the provider may choose to implement a separate infrastructure for
each distinct service and deploy tenants with similar policy and SLA requirements on the
same infrastructure.

The type of interface provided to a tenant may also vary based on the cloud service provider
offering. The interfaces may expose different views of the provider’s (PaaS) stack to a tenant
application developer. Some may be at a high level of abstraction such as an API, while
others may be at a lower level such as an object or file. The provider needs to ensure that it
maintains and presents logical tenant separation at all the interfaces it chooses to expose.
A similar rule applies to any common services (e.g., security, management and reporting)

9

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

that the cloud service provider offers to its customers. These common services need to be
designed and deployed in a way that ensures that the tenant segregation is maintained.

While it is certainly possible to deploy a single tenant application into a multitenant
environment by deploying multiple instances of the application (one per tenant), it is more
interesting to develop applications which are mulititenant-aware and capable of leveraging
the benefits of such an environment. However, developers of multitenant-aware applications
have additional considerations to keep in mind. These considerations are explored in more
detail in the following database design example.

In an example of multitenancy, multiple organizations can share a common application
without having access to each other’s data. Multitenancy can allow vast improvements to
an application’s scalability, but it is critical for the application to ensure that no tenant can
accidentally or intentionally gain access to another tenant’s data. Two companies may be
competitors yet still have their data stored side-by-side on the same multitenant database; if
one of them were able to read the other’s data (or worse yet, write over it), trust in the system
and in cloud computing itself would be undermined.

The easiest way to implement database multitenancy is in a “shared schema” approach,
where you simply add a “TenantID” column to each data table:

TenantID ProductName QuarterlySales

5991 Laptop Model 3200 297500

6012 Tablet Model 3Z 99300

5991 Phone Model 3700 154800

… … …

Unfortunately, while this is the easiest approach to implement, and the most scalable, it is
also the most difficult to secure. Developers would have to ensure that each and every data
access call, whether via stored procedure, parameterized query or ad-hoc query, would
include a filter for the appropriate TenantID clause. Even a single instance where the TenantID
clause is missed could create a data disclosure or tampering vulnerability. A potential
mitigation would be to create a data view filtered by the current user’s tenant ID and to
always query against that data view rather than directly against the table; however, this only
reduces the problem rather than solving it, as the developer now has to always remember
to query the view rather than the table. Setting appropriate database permissions (such as
removing direct access to the tables) can help solve this problem too, but overall a shared
schema approach is fragile and is not recommended.

A better approach is a “separate schema” design, in which the provider provisions each
tenant with its own set of tables that store only that tenant’s data. This design sounds like it
would be just as difficult to secure – that developers would now have to remember to add
clauses for table names instead of column names – but many database engines support
the concept of named schemas that make this alternative transparent to the developer.
Continuing the earlier example, there may be completely separate “Tenant5991.ProductSales”
and “Tenant6012.ProductSales” tables in the database, but the application only needs to set
the default schema for a user at the time the user account is created. The application can
then simply query against a default “ProductSales” table. Again, this makes the multitenancy
transparent to the tenant developers, and better still, helps to ensure that they can neither
accidentally nor intentionally access other tenants’ data.

10

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

Action Items

•	 For providers: Model all of your application’s interfaces in threat models. Ensure
that multitenancy threats such as information disclosure and privilege elevation are
modeled for each of these interfaces, and ensure that the threats are mitigated in the
application code and/or configuration settings.

•	 For providers: Use a “separate schema” database design when building multitenant
applications instead of adding a “TenantID” column to each table.

•	 When developing applications that leverage a cloud service provider’s (PaaS) services,
be aware of and take advantage of how the interfaces into the PaaS stack provide
tenant segregation.

CSA Reference

CSA Top Threat 1: Data Breaches

CSA Top Threat 2: Data Loss

References

Books, Articles and Reports:

•	 Multitenant Data Architecture;
http://msdn.microsoft.com/en-us/library/aa479086.aspx

Trusted Compute Pools

Description

Trusted Compute Pools (TCP), also referred to as trusted pools, are either physical or logical
groupings of compute resources/systems in a data center that share a security posture.
These systems provide measured verification of the boot and runtime infrastructure, typically
the BIOS and VMM/Hypervisor or OS using protocols and methods as described in the
TCG (Trusted Computing Group) standards[1] and the NIST Interagency Report 7904[2] for
measured launch and trust verification. The measurements are stored in a trusted location
on the system (usually a TPM) and verification occurs when an agent, service or application
requests the trust quote from the TPM. The measurements can then be validated via a
verification service or system that verifies the measurements against known good values
as well as validity of the signature of the quote. The use and propagation of the “Platform
Trust” attribute(s) by datacenter/cloud management and security systems allows for the
establishment of Trusted Compute Pools that can be used to assign workloads/applications
to trusted systems as well as to audit of the trust for a given system. TCP is used to aggregate
trusted systems and segregate them from untrusted resources, which results in the
separation of higher-value, sensitive workloads from commodity applications/workloads.

http://msdn.microsoft.com/en-us/library/aa479086.aspx

11

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

 In the above diagram (Figure 1), the measured launch sequence and storage of the
trust values is illustrated in steps 1-3. In steps 4 and 5, the Virtual infrastructure (and/or
orchestration system or policy management system) verifies the trust measurements with
the Attestation Service. Finally, in step 6, VMs and Applications can be provisioned/migrated
based on policies and trust.

A PaaS environment can expose trust verification APIs to the applications that run on it as
illustrated in Figure 2 below.

 The PaaS APIs exposed should follow the TCG specifications for TPM quoting or leverage a
local agent to abstract them. The verification service APIs can either be provided as part of
the platform, the virtualization/cloud infrastructure or as separate Representational State
Transfer (REST) APIs. There are examples available from both the Virtualization vendors and
the OpenStack: Open Attestation SDK project[3].

An example of a JavaScript Object Notation (JSON) based request to an attestation service
and its response is shown in Figure 3[4].

Figure 1. Trusted Compute Pools

Figure 2. Trusted Compute Pools and PaaS
Applications

12

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

 Action Items

•	 Ensure that your platform for developing cloud applications provides trust
measurement capabilities and the APIs and Services necessary for your applications to
both request and verify the measurements of the infrastructure they are running on.

•	 Verify the trust measurements either as part of the initialization of your application or
as a separate function prior to launching the application.

•	 Audit the trust of the environments your applications run on using attestation services
and/or capabilities such as the OpenAttestation (OAT) SDK, products that leverage OAT
or native attestation features from your infrastructure provider.

CSA Reference

CSA Top Threat 8: Insufficient Due Diligence

CSA Top Threat 9: Shared Technology Vulnerabilities

References

Books, Articles and Reports:

[1]	 TCG Standards and Specifications: http://www.trustedcomputinggroup.org/

[2]	 NIST Interagency Report 7904: Trusted Geolocation in the Cloud: Proof of Concept
Implementation (Draft) http://csrc.nist.gov/publications/drafts/ir7904/draft_
nistir_7904.pdf

[3]	 OpenStack: Open Attestation SDK https://wiki.openstack.org/wiki/OpenAttestation

[4]	 API Example from OpenStack OpenAttestation SDK: https://github.com/
OpenAttestation/OpenAttestation/blob/59cbf7853db3f50268e8983706cf628e10b
ab937/docs/Overview.pdf

Figure 3. Attestation Service Request
Example

http://www.trustedcomputinggroup.org/
http://csrc.nist.gov/publications/drafts/ir7904/draft_nistir_7904.pdf
http://csrc.nist.gov/publications/drafts/ir7904/draft_nistir_7904.pdf
https://wiki.openstack.org/wiki/OpenAttestation
https://github.com/OpenAttestation/OpenAttestation/blob/59cbf7853db3f50268e8983706cf628e10bab937/docs/Overview.pdf
https://github.com/OpenAttestation/OpenAttestation/blob/59cbf7853db3f50268e8983706cf628e10bab937/docs/Overview.pdf
https://github.com/OpenAttestation/OpenAttestation/blob/59cbf7853db3f50268e8983706cf628e10bab937/docs/Overview.pdf

13

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

Tokenization of Sensitive Data

Description

Sensitive Data

Data is considered sensitive if it should not be made known to the general public and
should only be made known within a specific context. Data may be deemed sensitive by
an organization, an industry or a government and each of these entities would specify the
requirements for how to handle and protect the sensitive data. Examples of sensitive data
include:

•	 Intellectual Property (IP) and other business sensitive data (e.g., customer lists)
•	 Payment Card Industry (PCI) data such as a credit card number
•	 Personally Identifiable Information (PII) such as a U.S. Social Security Number (SSNs),

and
•	 Protected Health Information (PHI) such as medical records

Depending upon the type of sensitive data and the requirements for protecting that
data, it may not be possible to generate or store the data within cloud environments. For
example, an organization may not wish to generate and store intellectual property in a cloud
environment not under its control. There may also be government or regional requirements
that may prevent sensitive data from being stored outside the boundaries of the country of
origin and would restrict the data to be generated and stored within a cloud environment
that is operating in that country of origin.

The most common recommendation is to protect sensitive data as close as possible to its
point of origin, which is normally within the application where the data is generated. But it
is possible to protect data at other points, such as when data is transmitted outside of an
organization’s boundary, or when it is written out to storage. In many cases, sensitive data
may be protected at multiple points and using multiple methods as it is transmitted and
stored within an IT environment. This is particularly true of cloud computing environments
where all or part of the environment is not under the control of the originator/owner of the
sensitive data.

Encryption is often the mechanism used to protect sensitive data and is discussed in more
detail within the “Data Encryption and Key Management” section of this paper. But other
approaches to the protection of sensitive data include removing the sensitive data from
systems where it does not need to exist or disassociating the data from the context or the
identity that makes it sensitive. Tokenization is an example of removing sensitive data; where
the sensitive data is replaced with a token or alias for that data. Data Masking is an example
of disassociating the data from the context or the identity that makes it sensitive. Both
approaches are discussed in more detail in this section.

Tokenization

Tokenization was initially introduced by the Payment Card Industry as a means to protect
credit card information, but tokenization is now used to protect all types of sensitive data.

In an example tokenization solution, the sensitive data (e.g. credit card number) is encrypted
when it is created or captured and transmitted to a secure central system. The system
generates a substitute value for the sensitive data, known at the token, that is used as a
replacement for the sensitive data in the environment in which it is processed and stored.
Tokens may be single-use or multiple-use and which is chosen is based on the nature of
the sensitive data being replaced and whether the sensitive data needs to be tracked as it is
passed in the environment.

14

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

The sensitive data is secured within the central system which can be protected with
multiple layers of protection and appropriate redundancy for disaster recovery and business
continuity. Access to the sensitive data can be limited to applications within the environment
that need to process the actual sensitive data. In that case the token can be exchanged at the
central system for the corresponding sensitive data.

Multiple deployment options exist for tokenization solutions. Tokenization may be offered as
an on-premise solution such as one deployed within a merchant environment or it may be
offered as a service (SaaS) by a provider such as a payment processor.

Advantages of the tokenization approach include:

•	 Reduction in the risk of exposure of the sensitive data, since it is resident in fewer
places.

•	 Systems that don’t contain the actual sensitive data may not need to comply with
data protection requirements defined by organizational, industry and government
regulations.

•	 The impact to applications to support tokenization is often much less than that of
other data protection methods (e.g. encryption), since the token size and format can
be adjusted to fit the existing data fields of the sensitive data being replaced.

Token Generation

Tokens must be generated using a method where if someone is in possession of only the
token it is computationally infeasible to recover the sensitive data that the token represents.
Methods used to generate tokens include the use of cryptographic algorithms or one-way
irreversible functions (e.g., hash functions). Token generation implementations are normally
configurable allowing for the token size and format to be adjusted to meet the data format
and schema requirements of the application into which the token will be substituted for the
sensitive data.

Token Mapping

To access the sensitive data associated with a token, a mapping between a token and the
sensitive data needs to be maintained. This mapping table is normally stored in the same
system where the sensitive data is securely stored to ensure that appropriate protections are
also applied to the mapping information itself. When the sensitive data need to be retrieved,
the token is provided and used as an index into the mapping table to find the link to the
associated sensitive data.

Data Masking

Data masking is an approach that disassociates data from the context or the identity that
makes the data sensitive. In contrast with tokenization, which replaces entire pieces of
sensitive data, data masking techniques involve replacing or obfuscating portions of a
data set.

Data masking is an approach that is often used in pre-production test system or in systems
used to debug a software application where one needs to work with a representative data
set, but does not need to have access to actual sensitive data. This approach allows the test
and debug systems to be exempt from sensitive data protection requirements.

Action Items

•	 When designing a cloud application, determine if the application needs to process
sensitive data and if so, identify any organizational, government, or industry
regulations that pertain to that type of sensitive data and assess their impact on the
application design.

15

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

•	 Whenever possible, organizations should minimize the applications and or systems
that need to process and store sensitive data. Consider implementing tokenization to
reduce or eliminate the amount of sensitive data that needs to be processed and or
stored in cloud environments.

•	 Use data masking in development, continuing engineering and pre-production
environment to exempt these environments from data protection requirements.

CSA Reference

CSA Top Threat 1: Data Breaches

CSA Top Threat 2: Data Loss

CSA Top Threat 6: Malicious Insiders

References

•	 Payment Card Industry Data Security Standard (PCI DSS), Version 2.0, October 2010
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf

•	 Payment Card Industry Data Security Standard (PCI DSS), Version 2.0, Information
Supplement: PCI DSS Tokenization Guidelines, August 2011
https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_
Supplement.pdf

•	 Tokenization: What’s Next After PCI?, 2012, EMC Corporation
http://www.emc.com/collateral/white-papers/h11918-wp-tokenization-rsa-dpm.pdf

•	 Visa Best Practices for Tokenization Version 1.0, 14 July 2010
http://usa.visa.com/download/merchants/tokenization_best_practices.pdf

Data Encryption and Key Management

Description

Data Encryption

Encryption is the most pervasive means of protecting sensitive data and may be applied in
multiple scenarios. Encryption applied as data is moved within an environment is referred to
as data-in-motion (or data-in-transit or data-in-flight), while encryption applied to the data
resident within an application or infrastructure component is referred to as data-at-rest. Data-
in-motion and data-at-rest solutions may be implemented in a number of ways.

Data-in-motion is normally provided via secure communication protocols such as TLS/SSL or
IPSec. Within cloud environments secure communications are often implemented as part of
the infrastructure, protecting data as it as it moves between infrastructure components, and
as it passes between the enterprise and the cloud provider and vice versa.

Data-at-rest solutions are more varied since data may be represented in many forms
depending upon how it is being created, processed and stored within an environment.
Within an application, data may be kept in a database or in a file, so encryption schemes
that encrypt data within a database or which encrypt files may be employed. In another
approach, data may be encrypted as it is written to storage. This encryption may occur at the
data leaves the host, within a switch within the network, or the entire disk within the storage
array may be encrypted. Given the diversity of the data-at-rest implementations, these
solutions may be available as part of the infrastructure or as part of an application running in
the cloud. It may even be possible that multiple data-at-rest solutions may be applied within
a single environment.

https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement.pdf
https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement.pdf
http://www.emc.com/collateral/white-papers/h11918-wp-tokenization-rsa-dpm.pdf
http://usa.visa.com/download/merchants/tokenization_best_practices.pdf

16

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

Key Management

Once encryption capabilities are introduced into an application or environment, it is
important for both providers and tenants to ensure that the associated cryptographic key
materials are properly generated, managed and stored. This is particularly the case for
data-at-rest encryption solutions where the loss of a data encryption key results in data loss
since the encrypted data can no longer be decrypted. Similarly the compromise of a data
encryption key can result in the exposure of the sensitive encrypted data. To address these
concerns, appropriate key management solutions to support data-at-rest or data-in-motion
implementations should be employed. Key management solutions also ensure that the
appropriate policies are applied to the cryptographic keys including how they are generated,
how often the keys need to be changed and how to handle the compromise of a key.

For secure communication protocols such as TLS/SSL and IPSec, which are often used to
provide data-in-motion protection, key management is in part built into the protocol.
In these protocols, the data encryption key (a symmetric key) used to protect a specific
communication channel is negotiated when the channel is first established. However,
these negotiations rely upon the presence of asymmetric key materials and associated
public key certificates (i.e., X.509 public key certificates) installed at each end-point of the
communication channel. These asymmetric keys and certificates are generated and managed
via a Public Key Infrastructure (PKI). A PKI could be operated by the enterprise, the cloud
service provider or a trusted third-party.

In many cloud environments, all three types of PKIs may co-exist. For example, the cloud
service provider may use its own PKI to manage the keys and certificates used to secure
communications between infrastructure components. Communications from the enterprise
to the cloud could be secured using credentials issued by the enterprise and the cloud
service provider, where the appropriate trust relationships are put in place between the
enterprise and the service provider PKIs. Alternatively credentials issued by a trusted third-
party PKI could be used to secure the communication channel between the enterprise and
the cloud where embedded trusted Root Certification Authority (CA) credentials within the
enterprise and the service provider end points are leveraged.

Data-at-rest solutions are often based on symmetric cryptography and hence need to
leverage symmetric key management techniques. In these solutions, the key use used
encrypt the data is referred to a data encryption key (DEK) and this DEK is protected (or
wrapped) using a key encryption key (KEK). Symmetric key management solutions provide
management of both DEKs and KEKs. Key management functionality could be located within
the application or infrastructure component where the encryption is implemented or the
functionality could be split between the application (which incorporates a key client) and
a central key server/repository. The advantages of a centralized key server are that policy
controls can be implemented in one place; multiple encryption capable applications can be
supported; the same key material can be shared between applications; and the server can
be designed for redundancy and disaster recovery. Given these advantages, it is likely that
centralized key management solutions will be employed within cloud environments.

The location of the central key server may vary based upon the type of data-at-rest solution
and the nature of the cloud environment. An application which bridges the enterprise
and cloud may leverage the key server located within the enterprise, while a storage disk
encryption solution running inside the cloud service provider’s data center may leverage
a key server in the same data center. It is also possible for a service provider to operate a
key management service in the cloud to support other cloud offerings. The emergence
of interoperable key management protocols such as the OASIS Key Management

17

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

Interoperability Protocol (KMIP) make it easier for cloud developers to build solutions which
can work in any of these cloud deployment scenarios.

Encryption and Key Management Considerations

Introduction of encryption and key management solutions into the cloud environment
brings with it additional regulations, compliance requirements and technical design
considerations of which developers of cloud solutions should be aware. These considerations
include the following:

•	 Import/Export Regulations: Ensure that any technical solution incorporating
encryption and key management functionality complies with the import and export
regulations for the countries in which the solution is developed and in which the
solution is operated.

•	 Compliance with Government or Organizational Key Management Requirements:
Ensure that the encryption and key management solution accommodates for any
organizational or government requirements for the back-up, archive or escrow of
encryption keys necessary to enable recovery of encrypted data.

•	 Use of Strong Cryptographic Algorithms: Choose algorithms, algorithm
modes and key lengths that are considered strong (not currently vulnerable to
known cryptographic attacks). Whenever possible, design solutions which enable
algorithms, modes and key lengths to be configurable. This will allow the solution
to dynamically disable algorithms which are no longer considered strong or to
accommodate for specific algorithm requirements specified by a government or an
industry. Please refer to the “Eliminate Weak Cryptography” section of the SAFECode
document “Fundamental Practices for Secure Software Development” for more
detailed information on which cryptographic algorithms, modes and key lengths are
considered secure.

•	 Use of FIPS 140-2 or Common Criteria Validated Cryptographic Modules: Some
customers or market verticals may require that encryption and key management
solutions leverage cryptographic modules (software or hardware) that have been FIPS
140-2 validated or Common Criteria certified.

•	 Leverage Key Management Standards and Protocols: Whenever possible,
implement key management standards and protocols (e.g., X.509, RFC5280, OASIS
KMIP) to ensure maximum interoperability in cloud environments where products
from multi-vendors are likely to be employed.

•	 Interaction of Encryption with Other Solution Features: Encryption of data-
in-motion or data-at-rest may prevent other solution functionality from being
implemented or may require that certain functionality be implemented before or
after encryption is applied. For example, it would not be possible to search encrypted
data for key words or it may be necessary to apply compression or de-duplication
techniques before encrypting the data.

•	 Choosing the Appropriate Encryption Solution: Different types of cryptographic
algorithms (e.g., block cipher vs. streaming) or algorithm modes may be more suited
for use in a particular solution. Developers may trade-off choices based on criteria such
as performance or the need to keep the size of the encrypted data the same as that of
unencrypted data.

Action Items

•	 When developing an application for the cloud, determine if cryptographic and key
management capabilities need to be directly implemented in the application or if the
application can leverage cryptographic and key management capabilities provided by
the PaaS environment.

18

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

•	 In order to protect and have access to encrypted data, make sure that appropriate key
management capabilities are integrated into your application to ensure continued
access to data encryption keys, particularly as data moves across cloud boundaries
(enterprise to could, public to private cloud, etc.).

•	 Developers should be aware of and act upon the encryption and key management
considerations outlined in this section.

CSA Reference

CSA Top Threat 1: Data Breaches

CSA Top Threat 2: Data Loss

References

•	 Common Criteria
http://www.commoncriteriaportal.org/

•	 D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, RFC5280: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,
May 2008.
http://www.ietf.org/rfc/rfc5280.txt

•	 E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, Recommendations for Key
Management - Part 1: General (Revision 3. NIST Special Publication 800-57 part 1, July
2012.
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

•	 International Telecommunication Union (ITU)–T, X.509: Information technology –
Open systems interconnection – The Directory: Public-key and attribute certificate
frameworks, August 2005.
http://www.itu.int/rec/T-REC-X.509-200508-S/en

•	 National Institute of Standards and Technology (NIST), Federal Information Processing
Standards Publication (FIPS) 140-2, Security Requirements for Cryptographic Modules,
May 25, 2001.
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

•	 Organization for the Advancement of Structured Information Standards (OASIS), Key
Management Interoperability Protocol Specification, Version 1.1, 24 January 2013,
OASIS Standard
http://docs.oasis-open.org/kmip/spec/v1.1/kmip-spec-v1.1.doc

Authentication and Identity Management

Description

A thorough discussion of the topics of authentication and identity management would
extend well beyond the scope of this paper; however, given that proper authentication and
identity management are critical to secure cloud application development, we are providing
some high level secure authentication and identity management design principles. If you
would like to explore these topics in more detail, please refer to the documents listed in the
References section below.

Authentication

It is important to consider authentication methods when designing cloud applications,
both from the point of view of the cloud application as an authentication consumer and
as an authentication provider. As an authentication consumer, the application may need

http://www.commoncriteriaportal.org/
http://www.ietf.org/rfc/rfc5280.txt
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://www.itu.int/rec/T-REC-X.509-200508-S/en
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://docs.oasis-open.org/kmip/spec/v1.1/kmip-spec-v1.1.doc

19

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

authenticate itself to the PaaS in order to access interfaces and services provided by the
PaaS. As an authentication provider, the application may need to authenticate the users of
the application itself. Because the authentication methods are likely to be different for both
the consumer and provider scenarios, it is likely that a single cloud application will need to
support multiple authentication methods.

For authentication to the PaaS service (i.e., the cloud application as an authentication
consumer), PaaS services commonly support public key certificate-based authentication
and directory-based authentication methods such as LDAP and Active Directory. The target
deployment environment for the application tends to drive the choice of authentication
mechanism: applications deployed in private or hybrid clouds tend to use enterprise-
focused authentication mechanisms such as Microsoft Windows domain or directory-based
authentication (i.e. LDAP and Active Directory); while applications deployed in public clouds
tend to use consumer-focused authentication mechanisms such as OATH and OpenID.

Identity Management

Cloud application developers should also consider the type and location of the identity
sources that their application and users will use with each of the authentication mechanisms
that their application supports. For authentication to the PaaS provider, the PaaS provider
will typically manage and host the identity source (i.e. directory or PKI-based identity).
The identity sources used for authentication to the cloud application vary with the target
deployment environment in the same way that the authentication mechanism itself does:
applications deployed in private or hybrid clouds tend to use identity sources managed
by and hosted within the enterprise (such as Windows domain servers); while applications
deployed in public clouds tend to use identity sources managed and hosted by a cloud
service provider.

Single Sign-On (SSO) and Identity Federation

There is great interest, particularly from enterprise users, for applications to provide seamless
access for their users regardless of whether the application is deployed in a private, public
or hybrid cloud environment. As an alternative to the authentication mechanisms we’ve
discussed so far, in which users directly authenticate themselves to the cloud application,
the application developer may choose to use single sign-on (SSO) and/or federated identity
mechanisms instead. With these mechanisms, a user only needs to authenticate himself/
herself once, within his or her own enterprise environment, and from then on can access
the cloud application without having to re-enter his or her credentials. SSO and federated
identity mechanisms work by establishing a “behind-the-scenes” trust relationship between
the enterprise and the cloud service provider so that SSO tokens, such as Security Assertion
Markup Language (SAML) tokens, can be passed to and validated by the cloud application.

Action Items

•	 Cloud application developers should implement the authentication methods and
credentials required for accessing PaaS interfaces and services.

•	 Cloud application developers need to determine the type of cloud environment
(private, hybrid or public) in which their application will run and ensure that they
implement appropriate authentication methods for those environments.

•	 When developing cloud applications to be used by enterprise users, developers should
consider supporting SSO solutions such as SAML.

20

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

CSA Reference

CSA Top Threat 3: Account or Service Traffic Hijacking

CSA Top Threat 4: Insecure Interfaces and APIs

CSA Top Threat 6: Malicious Insiders

References

•	 Initiative for Open AuTHentication (OATH), OATH Reference Architecture, Release 2.0, 2007.
http://www.openauthentication.org/webfm_send/1

•	 OpenID Foundation, What is OpenID?
http://openid.net/get-an-openid/what-is-openid/

•	 Organization for the Advancement of Structured Information Standards (OASIS),
Security Assertion Markup Language (SAML), Version 2.0, March 2005, OASIS Standard
http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip

http://www.openauthentication.org/webfm_send/1
http://openid.net/get-an-openid/what-is-openid/
http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip

21

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

IV. Implementation Issues

Shared-Domain Issues

Description

Several cloud providers offer domains that developers can use to store user content, or for
staging and testing of their cloud applications. Some examples of such domains include:

•	 Windows Azure cloudapp.net and azurewebsites.net
•	 Amazon s3.amazonaws.com
•	 Google googleusercontent.com

While such domains are undoubtedly convenient, they can also present surprising security
issues because of nuances of the same-origin policy. The same-origin policy is a mechanism
built into browsers that prevents a page running client-side script (such as JavaScript) from
reading data outside that page’s same “origin”. Browsers define two pages as belonging to
the same origin when they share the same protocol (HTTP or HTTPS), port (normally port 80
for HTTP and 443 for HTTPS) and domain name (such as www.safecode.org). Furthermore,
the domain names between the two pages must be exactly the same; “www.safecode.org” is
considered to be a different origin from “safecode.org” or “public.safecode.org”.

From a security point of view, the same-origin policy is a good thing: a cloud developer
building an application on the domain jacksbuckets.cloudsite.cxx wouldn’t necessarily want
his competitor at jillspails.cloudsite.cxx to be able to write client-side script code that could
read pages on the jacksbuckets site. Without the same-origin policy, pages on jillspails could
open frames to jacksbuckets to see if the user had been making orders to both businesses
(and maybe to offer the user a special discount to undercut Jack’s prices if so).

However, suppose that Jack and Jill settle their differences and decide to enter into a
business partnership together. Now they do want their sites’ client-side script to be able to
access each other’s pages, but the same-origin policy prevents it. To bypass the restrictions
of the same-origin policy, they both set their applications’ JavaScript document.domain
property to “cloudsite.cxx”. Now client-side script on jacksbuckets.cloudsite.cxx can read
pages on jillspails.cloudsite.cxx, and vice versa. However, now any other site hosted on
cloudsite.cxx can also lower its document.domain property to just “cloudsite.cxx” and read
both Jack’s and Jill’s customers’ data.

Similar shared-domain access problems exist for other areas:

•	 HTTP cookies: Normally cookies are scoped to the fully qualified domain name of the
page where it was created (i.e., “jacksbuckets.cloudsite.cxx”). However, developers
can choose to widen the scope of the cookie domain (i.e., “.cloudsite.cxx”). Just as in
the document.domain case, this lets applications share cookies between domains, but
opens up the potential for malicious third parties to both intercept and tamper with
cookie values.

•	 HTML5 local storage mechanisms: All browsers’ implementations of the HTML5
localStorage object default to scoping access to the complete fully qualified domain.
However, some browsers allow pages to widen the scope. Again, this lets applications
share data, but creates potential security vulnerabilities that allow attackers to read
and write that data.

22

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

Action Items

•	 Ensure that your cloud applications are using custom domains whenever the cloud
provider’s architecture allows you to do so. For example, Azure users should register
custom domains for the production versions of their applications, and should only use
cloudapp.net as a test or staging area.

•	 Review your source code for any references to shared domains.
•	 As a defense-in-depth measure, review your source code for any loosening of domain

restrictions, such as the JavaScript document.domain property, the HTTP cookie
domain property or HTML5 localStorage scope.

CSA Reference

CSA Top Threat 1: Data Breaches

CSA Top Threat 9: Shared Technology Vulnerabilities

References

Books, Articles and Reports:

•	 Web Application Security, A Beginner’s Guide; Chapter 5, Browser Security Principles:
The Same-Origin Policy; Sullivan, Liu; McGraw-Hill

•	 Security Best Practices for Developing Windows Azure Applications; Marshall, Howard,
Bugher, Harden; http://www.microsoft.com/en-us/download/details.aspx?id=7253

Securing APIs

Description

APIs are the front door into any application and it is critical that they are properly secured. In
many ways, API security for cloud applications is similar to API security for web applications
hosted in data centers. Traditional application layer security risks, such as the OWASP
Top 10[1], are still present when deploying your application to the cloud. This section will
highlight a few minor differences from securing traditionally hosted applications and the
risks that are common among most cloud applications.

As with any coding project, it is important to have a secure software development lifecycle
to ensure that there are security controls for each phase of development. If you are following
an Agile development methodology for building your cloud application, you may want to
refer to the SAFECode publication “Practical Security Stories and Security Tasks for Agile
Development Environments”[2] and/or to the Microsoft SDL for Agile[3] documentation.

The first opportunity for securing a web application API is the design phase of the software
development process. Many web APIs are designed to only be used by other cloud services
and they are not intended to be exposed to the general public. While a set of services may
logically be deemed “back end” since they are not providing the end-user UI, often times
these “back end” cloud servers are still exposing their APIs to the Internet in order to receive
requests from the “front end” cloud services. In these instances, an organization should
consider options for restricting access to the API such that only approved clients can reach
it. One option is to leverage mutually authenticated SSL to ensure that only approved clients
can interface with the API. Depending on your infrastructure, you may also be able to use
firewall rules to limit access to the known client’s IPs.

Organizations often look to single sign on (SSO) solutions for allowing the customer to use
multiple individual cloud services. SSO solutions such as OAuth can be tricky to implement

http://www.microsoft.com/en-us/download/details.aspx?id=7253

23

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

correctly and it is critical that these methods are reviewed in the design phase to ensure that
they are applied correctly. In addition, many authentication methods require the use of SSL.
Review your cloud provider’s SSL capabilities and ensure that your SSL solution can scale
within your cloud deployment.

Lastly, cloud applications often have a multi-tiered architecture with front end web servers
delegating tasks to workers deployed on a different network of machines. As a company
grows, there may be multiple front end services passing data back to those workers.
Organizations should review how data validation will be scaled in these situations. Front
end services are typically responsible for authentication, authorization and a minimum of
validation. As new services are created that pass data to the back end, it will be important to
ensure that each service enforces those controls consistently. On the other hand, if the back
end workers are intended to handle services such as file uploads, then it may make sense to
have the workers perform certain types of validation such as anti-virus scanning. As a defense
in depth measure, workers should perform their own validation if they are exposed to the
Internet. Careful planning and threat modeling will help ensure that validation is handled at
the correct point in the work flow and consistently applied as you grow your service.

For the testing phase, some organizations will want to deploy continuous scanning against
their production environment to determine any real world risks as soon as possible. Be aware
that there are risks associated with testing the production cloud environment. Organizations
should review their hosting provider’s policies to determine whether the hosting provider
will need to be notified. Consider whether the testing will impact other customers in multi-
tenant environments. Also, load balancing within the cloud may affect certain types of
tests and they may need to be performed in a standalone environment. For instance, if the
test attempts use a vulnerability to upload a malicious file, then the researcher may not be
guaranteed to reach the same server to test for the existence of the file in the second step.

API tests should cover all of the traditional web application/service vulnerabilities such as
those found within the OWASP Top 10. Organizations must ensure that their testing tools
are appropriate for their environment. For instance, many cloud services are based on
NoSQL databases and some testing tools do not yet test for NoSQL injection vulnerabilities.
In addition, many testing tools now have the ability to be deployed in the cloud for large
scale scanning and localized testing from the same network. Organizations should explore
whether that is preferred for their testing needs.

The security testing phase is also an opportunity to validate the organization’s centralized
logging and monitoring capabilities. If an attack during the penetration test was successful,
validate whether a log of the attack was captured in the centralized logging system. There
are a multitude of approaches for detecting attacks in the cloud. Some organizations choose
to implement web application firewalls (WAFs), such as mod_security. Other organizations
have chosen to search for attacks based on the errors generated by their web server and
databases[4]. If the services provide web pages, organizations can leverage content security
policies (CSP) with reporting enabled. Host based intrusion detection can help identify web
attacks that target the OS. Regardless of your monitoring implementation, your penetration
test can be used to measure your breach detection capabilities. Once the log is captured,
analyze whether it would be possible to structure an alert based on that log to detect future
successful attacks.

Deploying cloud services focuses on the ability to scale. Therefore, the security development
lifecycle for those services should also be able to handle scalable deployments. By carefully
restricting access to APIs, an organization can reduce the threats to their data. Ensuring that
regular testing is performed with the appropriate tools will ensure that the designs and code

24

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

meet the organization’s security goals. Further, testing can help to validate the monitoring
capabilities of the services.

Action Items

•	 Use your design phase to carefully plan how the components of your cloud service
will interact. Determine if the APIs can be restricted so that only trusted hosts can call
them. Ensure that inter-service communication is securely authenticated.

•	 Ensure that the tools that you are using are appropriate for your APIs and can target
the deployed technologies.

•	 Use testing to validate your security monitoring and alerting capabilities. Ensure that
any successfully exploited vulnerability was logged and appropriate alerting occurred.

CSA Reference

CSA Top Threat 1: Data Breaches

CSA Top Threat 9: Shared Technology Vulnerabilities

References

[1]	 OWASP Top Ten Project; https://www.owasp.org/index.php/Category:OWASP_Top_
Ten_Project

[2]	 Practical Security Stories and Security Tasks for Agile Development Environments;
http://www.safecode.org/publications/SAFECode_Agile_Dev_Security0712.pdf

[3]	 SDL for Agile; Microsoft; http://www.microsoft.com/security/sdl/discover/sdlagile.
aspx

[4]	 Effective Approaches to Web Application Security; Zane Lackey;
http://vimeo.com/54107692

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.safecode.org/publications/SAFECode_Agile_Dev_Security0712.pdf
http://www.microsoft.com/security/sdl/discover/sdlagile.aspx
http://www.microsoft.com/security/sdl/discover/sdlagile.aspx
http://vimeo.com/54107692

25

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

V. Summary of Design and Implementation Action Items
Multitenancy
•	 For providers: Model all of your application’s interfaces in

threat models. Ensure that multitenancy threats such as
information disclosure and privilege elevation are modeled
for each of these interfaces, and ensure that the threats
are mitigated in the application code and/or configuration
settings.

•	 For providers: Use a “separate schema” database design
when building multitenant applications instead of adding a
“TenantID” column to each table.

•	 When developing applications that leverage a cloud service
provider’s (PaaS) services, be aware of and take advantage
of how the interfaces into the PaaS stack provide tenant
segregation.

Tokenization of Sensitive Data
•	 When designing a cloud application determine if the

application needs to processing sensitive data and if
so, identify any organizational, government, or industry
regulations that pertain to that type of sensitive data and
assess their impact on the application design.

•	 Whenever possible, organizations should minimize the
applications and or systems that need to process and store
sensitive data. Consider implementing tokenization to reduce
or eliminate the amount of sensitive data that needs to be
processed and or stored in cloud environments.

•	 Use data masking in development, continuing engineering
and pre-production environment to exempt these
environments from data protection requirements.

Trusted Compute Pools
•	 Ensure that your platform for developing cloud applications

provides trust measurement capabilities and the APIs and
Services necessary for your applications to both request
and verify the measurements of the infrastructure they are
running on.

•	 Verify the trust measurements as either part of the
initialization of your application or as a separate function
prior to launching the application.

•	 Audit the trust of the environments your applications run
on using attestation services and/or capabilities such as the
OpenAttestation (OAT) SDK, products that leverage OAT or
native attestation features from your infrastructure provider.

Data Encryption and Key Management
•	 When developing an application for the cloud, determine if

cryptographic and key management capabilities need to be
directly implemented in the application or if the application
can leverage cryptographic and key management capabilities
provided by the PaaS environment.

•	 In order to protect and have access to encrypted data, make
sure that appropriate key management capabilities are
integrated into your application to ensure continued access
to data encryption keys, particularly as data moves across
cloud boundaries (enterprise to cloud, public to private
cloud, etc.).

•	 Developers should be aware of and act upon the encryption
and key management considerations outlined in this
document.

Authentication and Identity Management
•	 Cloud application developers should implement the

authentication methods and credentials required for
accessing PaaS interfaces and services.

•	 Cloud application developers need to determine the type
of cloud environment (private, hybrid or public) in which
their application will run and ensure that they implement
appropriate authentication methods for those environments.

•	 When developing cloud applications to be used by enterprise
users, developers should consider supporting SSO solutions
such as SAML.

Shared-Domain Issues
•	 Ensure that your cloud applications are using custom

domains whenever the cloud provider’s architecture allows
you to do so. For example, Azure users should register custom
domains for the production versions of their applications,
and should only use cloudapp.net as a test or staging area.

•	 Review your source code for any references to shared
domains.

•	 As a defense-in-depth measure, review your source code for
any loosening of domain restrictions, such as the JavaScript
document.domain property, the HTTP cookie domain
property or HTML5 localStorage scope.

Securing APIs
•	 Use your design phase to carefully plan how the components of your cloud service will interact. Determine if the APIs can be

restricted so that only trusted hosts can call them. Ensure that inter-service communication is securely authenticated.
•	 Ensure that the tools that you are using are appropriate for your APIs and can target the deployed technologies.
•	 Use testing to validate your security monitoring and alerting capabilities. Ensure that any successfully exploited vulnerability was

logged and appropriate alerting occurred.

26

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

Practices for Secure Development of Cloud Applications

VI. Moving Industry Forward
The emergence and maturation of cloud computing has already provided significant
advantages to technology users of all kinds, and many believe we have only just begun to
explore the possibilities. But with new advancements often come new security challenges.
The path to secure cloud computing cannot be viewed as a simple checklist of practices,
but rather a process that must evolve alongside new use cases and advancements in our
understanding of IT and software security.

It is our hope that our work as outlined this paper reflects that approach by bringing
together the unique considerations of those developing the software that powers cloud
computing with the latest guidance on secure development practices. While we aimed to
provide actionable advice that can – and should – be tailored by individual enterprises to
meet their needs, we believe that these practices are best viewed as part of a larger software
security process that will continue to evolve alongside advancements in cloud computing.

To this end, we not only encourage broad industry adoption of these practices, but also
continuing collaboration among professionals and experts across the industry to ensure that
software security processes and practices continue to support the security needs of those
building and implementing cloud computing solutions.

Supporting the Cloud
Security Ecosystem
The Cloud Security Alliance has a
number of working groups dealing
with topics such as mobile, big
data, privacy and security service
level agreements. To support secure
adoption of cloud computing,
there are a number of areas we
believe are important to consider.
These include interoperability and
portability, security innovation in
the cloud, Privacy level agreements
(PLA), Security Service Level
Agreements (SecSLA), and the
promotion of open standards. New
guidance and best practices will
emerge to complement the work
done in this paper and hopefully
enable and support cloud providers
and especially cloud customers
in aligning their internal policies
and security architectures with
agreed upon cloud security policies
where applicable, and to help them
evaluate the level of service offered
by the cloud service providers.

© 2013 SAFECode & Cloud Security Alliance – All Rights Reserved.

About SAFECode

The Software Assurance Forum for Excellence in Code
(SAFECode) is a non-profit organization exclusively dedicated
to increasing trust in information and communications
technology products and services through the advancement
of effective software assurance methods. SAFECode is a
global, industry-led effort to identify and promote best
practices for developing and delivering more secure and
reliable software, hardware and services. Its members include
Adobe, CA Technologies, EMC Corporation, Intel Corporation,
Microsoft Corp., SAP AG, Siemens AG, and Symantec Corp.

About the Cloud Security Alliance

The Cloud Security Alliance (CSA) is a not-for-profit
organization with a mission to promote the use of best
practices for providing security assurance within Cloud
Computing, and to provide education on the uses of Cloud
Computing to help secure all other forms of computing.
The Cloud Security Alliance is led by a broad coalition of
industry practitioners, corporations, associations and other
key stakeholders.

Acknowledgements
Brad Arkin, Adobe Systems, Inc.

Eric Baize, EMC

David Doughty, Intel

Steven B, Lipner, Microsoft

Dr. Frances Paulisch, Siemens AG

Stacy Simpson, SAFECode

	I. Foreword
	Methodology and Scope

	II. Threats to Cloud Computing
	Data Breaches
	Data Leakage and Data Loss
	Insecure Interfaces and APIs
	Denial of Service
	References

	III. Design Issues
	Multitenancy
	Description
	Action Items
	CSA Reference
	References

	Trusted Compute Pools
	Description
	 Action Items
	CSA Reference
	References

	Tokenization of Sensitive Data
	Description
	Action Items
	CSA Reference
	References

	Data Encryption and Key Management
	Description
	Action Items
	CSA Reference
	References

	Authentication and Identity Management
	Description
	Action Items
	CSA Reference
	References

	IV. Implementation Issues
	Shared-Domain Issues
	Description
	Action Items
	CSA Reference
	References

	Securing APIs
	Description
	Action Items
	CSA Reference
	References

	V. Summary of Design and Implementation Action Items
	VI. Moving Industry Forward

