
Practical Security Stories and Security Tasks
for Agile Development Environments
JULY 17, 2012

Table of Contents

Problem Statement and Target Audience 2

Overview 2
Assumptions 3

Section 1) Agile Development
Methodologies and Security 3

How to Choose the Security-focused
Stories and Security Tasks? 3

Story and Task Prioritization Using
“Security Debt” 4

Residual Risk Acceptance 4

Section 2a) Security-focused Stories
and Associated Security Tasks 5

Section 2b) Operational Security Tasks 29

Section 3) Tasks Requiring the Help of
Security Experts 31

Appendix A) Residual Risk Acceptance 32

Glossary 33

References 33

About SAFECode 34

2

Problem Statement and
Target Audience
One of the strengths of the Agile development
technique lies in it being an “early feedback system”
that can potentially identify defects much earlier in
the software lifecycle than conventional software
development techniques. With Agile, necessary
changes are incorporated in a dynamic fashion.
Cycles/sprints are very short, usually no more than
two to four weeks, and for this reason software
development teams find it difficult (if not impossi-
ble) to comply with a long list of security assurance
tasks. Consequently, more often than not, the
development team ends up skipping security tasks
altogether; shipping software with a high software
security risk level.

This paper attempts to address this gap by provid-
ing Agile practitioners with a list of security-focused
stories and security tasks they can consume “as is”
in their Agile-based development environments.
The objective of the paper is to go a step beyond
providing a list of security flaws and translate
secure development practices into a language and
format that Agile practitioners can more readily act
upon as part of a standard Agile methodology. To
simplify things further, the recommended security
tasks are broken down by roles, including architects,
developers and testers, and the tasks that most
often require specialized skills from security experts
are listed separately. As such, this paper can readily
serve as a first stop for organizations which:

1. Already use Agile methods and wish to incor-
porate security tasks into or enhance existing
security tasks used in their development process.

2. Use the ‘waterfall’ development technique with
adequate security measures already in place, but
are evaluating moving to Agile methods without
re-inventing the wheel.

3. Use a non-Agile development technique but
need to interoperate with Agile environments,
for example, a component development out-
sourced to a vendor using Agile development
technique.

Overview
This paper consists of three Sections with content
tailored specifically to the unique needs of Agile
architects, developers and testers.

Section 1

• Provides an overview of a sample Agile meth-
odology and a set of security tasks that may be
beneficial.

Section 2

• Section 2a consists of 36 security-focused stories
with associated security tasks. The “threat
landscape” for this section was developed
based on the most common issues SAFECode
members are seeing in their own environ-
ments. In addition, the CWE/SANS Top 25 Most
Dangerous Development Errors list (plus the 16
weaknesses on the cusp list) and the OWASP Top
10 list were consulted for this section to ensure
completeness of coverage. A list of unique

“security-focused stories” was derived from this
threat landscape, followed by associated com-
mon security tasks for the stories.

• Section 2b consists of a set of 17 operational
security tasks that Agile practitioners should
consider conducting on an ongoing basis. These
have been further classified as Required or
Recommended for new or existing code, or for
the software development team in general.

Section 3

• Consists of 12 advanced security tasks that
typically require guidance from software security
experts (in-house or consultants) for the first

3

few iterations or in an ongoing manner. These
tasks relate more to the competencies of the
team members and their way of working.

Assumptions
1. The audience for this paper should already

understand the fundamental nature of Agile
software development. The key concepts and
terms are derived from Scrum or Scrum-like
methodology. However, the focus is on helping
the reader implement a practical approach to
building secure software via Agile concepts and
not to promote any individual practice, as each
organization will have different needs.

2. A team’s architects, developers and testers were
kept in perspective, instead of the end user,
when choosing security-focused story names.
While user stories center around “use cases”
that allow the user to complete a certain task,
security-focused stories revolve around “abuse
cases,” which don’t reflect a typical end-user
view of the system, and to which the end-user
has no visibility or participation.

Section 1) Agile Development
Methodologies and Security
In Agile, the business requirements are typically
defined as user stories or epics (group of related
user stories). These describe expected user scenarios
(“use cases,” “features,” etc.) at a fairly high level.
The focus is on defining system functionality with
an affirmative approach (“as a user I want to access
my private data”) instead of by negation of an
end-state or condition (“as a user I do not want my
data to be exposed”). These user stories are then
broken into more manageable and concrete tasks
that the sprint team implements. They can be very
detailed and technical in nature and therefore are
prime candidates for defining the detailed security
aspects of the system.

How to Choose the Security-focused
Stories and Security Tasks?
1. An initial round of security analysis should be

conducted to ensure that product management
understands the security-relevant aspects of
business requirements. These include envisioned
system functionality, policy/compliance, legal,
contractual and regulatory requirements, and in
best cases, clear security-related requirements.
For example, if the software handles and stores
credit card holder data, it is likely subject to
the PCI DSS requirements. At this time, product
management can be consulted to verify they are
prepared for this and understand the potentially
strict compliance obligations associated with
such a requirement.

 Product management should then work through
these individual requirements and define more
detailed backlog items that are then entered
into the backlog along with a proper prioritiza-
tion. At this time, appropriate security-focused
stories from Section 2a should be considered
to ensure user stories are covered by relevant
security stories. Security stories that are purely
non-functional, for example “as an architect/
developer, I want to ensure graceful handling
of all exceptions,” need to be placed into the
backlog as agreed with the Product Owner and
the development team.

 When a new development sprint starts, the
development team should pick up (or be
assigned) the tasks allocated for the sprint (both
functional and security-focused tasks) and com-
mence the development work.

2. Security tasks listed in Section 2b should be
incorporated in an ongoing manner in your Agile
development life cycle.

http://en.wikipedia.org/wiki/Agile_software_development

4

3. Security tasks listed in Section 3 should be
incorporated as the tasks from 2a and 2b are
accomplished.

Note: To maximize the effective use of this work,
security tasks associated with the security-focused
stories selected during sprint planning must be
part of the version control pre-check-in task list for
new/modified code (as applicable). The QA team
should also create relevant test cases mapped to
the security-focused stories and execute all of them
during testing.

Story and Task Prioritization
Using “Security Debt”
The term “security debt” in Agile software develop-
ment is used to describe uncompleted tasks that
have security relevance. Skipping, postponing,
de-prioritizing or otherwise ignoring applicable
security-focused stories or security tasks will build

“debt” that by accumulating will likely leave the
application vulnerable. Sometimes this is addressed
by performing security sprints that try to clear or
reduce this debt, but it is recommended to try to
avoid building debt in the first place. Unfortunately,
sometimes it is impossible to not build security
debt. Prioritization of some kind is necessary in such
cases. In order to accomplish that, take the follow-
ing factors into account:

1. Return on investment: Consider some of the
proposed stories and tasks; it will be easy to
see that they directly influence not only the
coding of a system, but its very design. If a
team must concentrate on a select number of
stories and tasks, then the ones in this paper
might give the team the most return on invest-
ment; but if left unaddressed, these tasks are the
ones that will cost the most to revisit once the
system has been designed and implemented. For
example, the completion and maintenance of a

comprehensive threat model may be a costly
activity, but one that will have long-term
benefits due to the number of defects it can
reveal if performed early, and which will make
the tasks of system architecture and documen-
tation easier in the future.

2. Nature of your system: Another factor when
considering security debt is the nature of your
system, its deployment, and the nature of the
data for which it will be responsible. Given these
factors, it may be apparent that one particular
attack vector would be more readily prevalent
than others, and that might influence the
security stories and tasks you choose to address
first. It does not mean that the others are less
important, but simply that the conditions of your
system dictate that these activities will mini-
mize your system’s attack surface versus others
that might be “good to have” but do not have as
immediate an impact on your system’s security
posture.

Residual Risk Acceptance
It is important to both inform business stakehold-
ers of any known risks left in the application that
is approved for release to production and get their
approval for leaving these risks unresolved. The
sprint review conducted at the end of a given sprint
should cover any issues left in the completed sprint.
A single release may include a large number of
sprints performed by various teams, and thus there
can be multiple known risks and issues in a release.
Any risk that may impact the business objectives
must be approved by the respective stakeholders
before release. Undone work must go into the
backlog to ensure it is tracked. Refer to Appendix A
for more details.

5

Section 2a) Security-focused Stories
and Associated Security Tasks
The purpose of this section is to provide an action-
able list of security tasks that Agile architects,
developers and testers can perform according to
their specific roles to ensure that security consider-
ations are addressed throughout the development
process.

While SAFECode’s Fundamental Practices for Secure
Software Development already lists a set of engi-
neering tasks for creating more secure software, it
may not be readily apparent to Agile development
teams how best to incorporate these tasks into
their unique environments. This section breaks
down the Fundamental Practices into familiar Agile

“stories” focused on security and derived from the
issues most commonly seen by SAFECode members
in their environments. Both the CWE/SANS Top 25
Most Dangerous Development Errors list (plus the 16
weaknesses on the cusp list) and the OWASP Top 10
list were also consulted to ensure broad coverage.

In addition, each security-focused story has been
associated with a list of corresponding backlog
tasks, which are based on the observations the
authors (or their internal peers working in the soft-
ware security domain) have made while working
with different software development teams within
their respective organizations. These tasks were also
reviewed by representatives from across SAFECode’s
membership to ensure their practicality and broad
applicability. This mapping of Fundamental Prac-
tices to security stories to backlog tasks provides
secure engineering guidance to Agile teams in a
format that is familiar to them and that they can
easily consume.

A few security tasks require combined actions from
both Architect/Developer and QA resources. These
have been prefixed as A/D/T (Architect/Developer/
Test). Others have been tagged as A/D (Architect/
Developer) or T (Test).

Corresponding Common Weakness Enumerations
(CWE-ID) have also been indicated for those inter-
ested in understanding the underlying security
weakness and its implications in detail.

Fundamental Practices for
Secure Software Development
2nd Edition: A Guide to the Most
Effective Secure Development
Practices in Use Today

www.safecode.org/publications/
SAFECode_Dev_Practices0211.pdf

Fundamental Practices for
Secure Software Development

2ND EDITION

A Guide to the Most Effective Secure
Development Practices in Use Today

February 8, 2011

Authors
Mark Belk, Juniper Networks
Matt Coles, EMC Corporation
Cassio Goldschmidt, Symantec Corp.
Michael Howard, Microsoft Corp.
Kyle Randolph, Adobe Systems Inc.

Mikko Saario, Nokia
Reeny Sondhi, EMC Corporation
Izar Tarandach, EMC Corporation
Antti Vähä-Sipilä, Nokia
Yonko Yonchev, SAP AG

Editor Stacy Simpson, SAFECode

http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf

66

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

1 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify allo-
cation of resources
within limits or
throttling

[A] Clearly identify resources. A few examples:

• Number of simultaneous connections to an
application on a web server from same user
or from different users

• File size that can be uploaded

• Maximum number of files that can be
uploaded to a file system folder

[A/D] Define limits on resource allocation.

[T] Conduct performance/stress testing to
ensure that the numbers chosen are realistic
(i.e. backed by data).

[A/D/T] Define and test system behavior for
correctness when limits are exceeded. A few
examples:

• Rejecting new connection requests

• Preventing simultaneous connection requests
from the same user/IP, etc.

• Preventing users from uploading files greater
than a specific size, e.g., 2 MB

• Archiving data in file upload folder when a
specific limit is reached to prevent file system
exhaustion

• Validate Input
and Output
to Mitigate
Common
Vulnerabilities

• Perform Fuzz/
Robustness
Testing

CWE-770

http://cwe.mitre.org/data/definitions/770.html

77

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

2 As a(n) architect/
developer, I want
to ensure AND
as QA, I want to
verify application
of appropriate
encoding for output
context

[A] Clearly identify all types of output context.
A few examples:

• Output is rendered only as HTML

• Output is rendered as HTML attributes

• Output is rendered as a URL

[D] Adhere to SAFECode’s Fundamental Prac-
tices for Secure Software Development for
proper encoding of output context. Prefer
use of language-specific in-built APIs such as
HTMLEncode() (for C#) for encoding purpose.
If that’s not feasible, use well-known encoding
frameworks/controls such as ESAPI encoder.
Also, do canonicalization of user input to
prevent bypass of encoding filters that have
been applied.

[T] Use a combination of manual test cases and
automated means (web vulnerability scanners)
in order to verify the strength of encoding filter
applied.

• Use Anti-Cross
Site Scripting
(XSS) Libraries

• Validate Input
and Output
to Mitigate
Common
Vulnerabilities

CWE-838

3 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
application of or
access within index
boundaries of buf-
fers and arrays

[A/D] Define where buffer operations (on
dynamic buffers) occur. Define data types and
bounds for buffer operations.

[D] Adhere to SAFECode’s Fundamental Prac-
tices for Secure Software Development for
prevention of buffer overflows.

[D] Scan source code for such violations using
static code analyzer tools, e.g., Coverity.

[A/D] Conduct false positive analysis of flagged
issues.

[D] Fix buffer overflow issues analyzed as
confirmed.

[T] Use fuzz testing tools to verify that no
process/system crashes/hangs exist. If they
do, fix them and re-run the tool.

• Minimize Use
of Unsafe String
and Buffer
Functions

• Use a Current
Compiler Toolset

• Use Static
Analysis Tools

CWE-120
CWE-131
CWE-805

http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://cwe.mitre.org/data/definitions/838.html
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/805.html

88

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

4 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
graceful handling of
all exceptions

[A/D] Application should have provisions to
catch all exceptions.

[A/D] Application exception codes should be
clearly defined.

[A/D/T] Unknown exceptions should be tied to
a generic error code.

[A/D/T] Any exception condition in the applica-
tion should not throw stack trace (or similar
information) to the end-user.

• Perform Fuzz/
Robustness
Testing

• Use a Current
Compiler Toolset

• Use Static
Analysis Tools

CWE-754

5 As a(n) architect/
developer, I want
to ensure AND
as QA, I want to
verify concurrent
execution using
shared resources
with proper
synchronization

[D] Scan source code for race condition viola-
tions using static code analyzer tools, e.g.,
Coverity.

[A/D] Conduct false positive analysis of flagged
issues.

[D] Fix race condition issues analyzed as
confirmed.

[T] Use fuzz testing tools to verify that process/
system crashes/hangs don’t exist. If they do, get
them fixed and re-run to verify.

• Perform Fuzz/
Robustness
Testing

• Use Static
Analysis Tools

CWE-362

6 As a(n) architect/
developer, I want to
ensure AND as QA,
I want to verify use
of controlled format
string

[D] Adhere to SAFECode’s Fundamental Prac-
tices for Secure Software Development for
preventing format string issues.

[D] Scan source code for such violations using
code analyzer tools, e.g., Coverity.

[A/D] Conduct false positive analysis of flagged
issues.

[D] Fix format string issues analyzed as
confirmed.

[T] Use fuzz testing tool to verify that no
process/system crashes/hangs exist. If they
do, fix them and re-run the tool.

• Minimize Use
of Unsafe String
and Buffer
Functions

• Use Canonical
Data Formats

• Use Static
Analysis Tools

• Perform Fuzz/
Robustness
Testing

CWE-134

http://cwe.mitre.org/data/definitions/754.html
http://cwe.mitre.org/data/definitions/362.html
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://cwe.mitre.org/data/definitions/134.html

99

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

7 As a(n) architect/
developer, I want to
ensure AND as QA,
I want to verify use
of controlled integer
bounds

[D] Adhere to SAFECode’s Fundamental Prac-
tices for Secure Software Development for
preventing integer overflows.

[D] Scan source code for such violations using
code analyzer tools, e.g., Coverity.

[A/D] Conduct false positive analysis of flagged
issues.

[D] Fix integer overflow issues analyzed as
confirmed.

[T] Use fuzz testing tools to verify that no
process/system crashes/hangs exist. If they
do, fix them and re-run the tool.

• Use Robust
Integer Opera-
tions for Dynamic
Memory Alloca-
tions and Array
Offsets

• Use Static
Analysis Tools

• Perform Fuzz/
Robustness
Testing

CWE-190

8 As a(n) architect/
developer, I want
to ensure AND
as QA, I want to
verify that users
have access to the
specific resources
they require which
they are authorized
to use

[A] Create a detailed authorization matrix that
specifies which user groups/users have access
to which resources (folders, files, UI, etc.).

[D] Ensure that your application’s authorization
mechanism complies with the matrix created
in step (for example, if role-based access control
[RBAC] is used, ensure it corresponds to the
authorization matrix created).

[T] Test effectiveness by using a combination of
manual and automated means.

• Use Least
Privilege

CWE-862
CWE-863

9 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
correct conversion
between numeric
types

[D] Adhere to SAFECode’s Fundamental Prac-
tices for Secure Software Development for
preventing type conversion errors.

[D] Scan source code for such violations using
code analyzer tools, e.g., Coverity.

[A/D] Conduct false positive analysis of flagged
issues.

[D] Fix incorrect numeric type issues analyzed
as confirmed.

[T] Use fuzz testing tool to verify that no
process/system crashes/hangs exist. If they
do, fix them and re-run the tool.

• Use Robust
Integer Opera-
tions for Dynamic
Memory Alloca-
tions and Array
Offsets

• Use Static
Analysis Tools

• Perform Fuzz/
Robustness
Testing

CWE-681

http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/862.html
http://cwe.mitre.org/data/definitions/863.html
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://cwe.mitre.org/data/definitions/681.html

1010

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

10 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
correct permission
assignment and
maintenance for all
critical resources

[D/T] When a critical resource is defined or
accessed, make sure that the access permis-
sions (programmatic and systemic) to it are
left in their most restrictive but useful possible
setting.

[D] Describe correct permissions for the
resource in the security configuration guide.

• Use Least
Privilege

CWE-732

11 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
that sensitive data
is kept restricted to
actors authorized to
access it

[A/D/T] When sensitive data (either user data
that’s considered sensitive or system data
that may lead to insecure outcomes if leaked)
is transferred by any channels across a trust
boundary (for example, internal IP addresses
as part of an HTTP or SMTP header, or a full
internal filename with path is exposed in a GUI),
be sure to remove the sensitive part.

[A] Clearly specify which data produced by the
system is to be considered sensitive and social-
ize that status across the development team
and QA.

[D/T] When handling sensitive data, have your
code fail gracefully so that sensitive data does
not leak.

[D/T] Make sure that sensitive information is
not leaked in error messages and stack traces.

• Use Least
Privilege

CWE-212

12 As a(n) architect/
developer, I want to
ensure AND as QA,
I want to verify that
the same steps are
followed in the
same order to
perform an action,
without possible
deviation on
purpose or not

[A/D/T] When creating and verifying the
business logic of multiple-step actions in the
system, ensure that the action cannot suffer
from missing steps, that steps cannot be
performed in an arbitrary order, and that there
is a timeout in each step that invalidates the
whole operation.

[D/T] In case of timeout or user-cancelation of
the action, be sure that all initiated changes are
rolled back to the state they were in before the
action started.

[D/T] Be sure that all database commits and
system state changes are only affected after
the business logic has been validated and the
action has been completed.

• Threat Modeling CWE-841

http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/212.html
http://cwe.mitre.org/data/definitions/841.html

1111

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

13 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
that the damage
incurred to the
system and its
data is limited if
an unauthorized
actor is able to take
control of a process
or otherwise influ-
ence its behavior in
unpredicted ways

[A] Make sure distinct processes that need
to communicate can do so in a way that only
requires the minimum set of permissions (for
example, don’t run two processes as root just
because they both need to access the same
resource in a Unix environment).

[D] Make sure any process that needs to have
privileged access has it only for the minimum
amount of time necessary and is able to drop
the privileges as soon as they are not needed
(for example, a network service opening a port
lower than 1024 and dropping the elevated
privileges necessary to do so right after the
port is successfully opened).

[D] Make sure that privileges are dropped
correctly as part of privileged operations
exception handling.

[A/D/T] Make use of operating systems
facilities like dedicated users, operating system
capabilities matrices, jails and sandboxes to
limit the exposure of the system to exploitation
of a given process.

[T] Make sure when testing that the system can
operate in a security-hardened environment
(more restrictive in terms of privilege handling).

• Implement
Sandboxing

• Threat Modeling

• Determine Attack
Surface

CWE-250

http://cwe.mitre.org/data/definitions/250.html

1212

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

14 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify that
every resource and
system that I access
as part of operating
my own system is
providing me with
verified services and
content, and that
content I provide
gives my customer
protection and
verification against
substitution and
tampering in-transit

[D/T] When relying on the content of remote
systems for the correct operation of your
system, verify both the identity of the remote
system (by using DNS and reverse-DNS queries
and/or SSL certificates) and the integrity and
authenticity of the content acquired (by using
signatures and hashes).

[A/D/T] Make use of code-signing technologies
like Authenticode, jar signing, etc., as appropri-
ate per content when consuming, and provide
when producing.

[D/T] Make sure to perform all necessary checks
to validate the object being checked depending
on the technology used (certificate chain of
trust, for example).

[A/D] Make proper use of cryptography tools
to ensure integrity of a given value between its
inception and its use.

[A/D] Store all sensitive information used for
security decisions on the server only — do not
rely on client-side security decisions.

[A/D] Use session management frameworks
over stateless protocols to maintain security-
decision values.

[A/D/T] Understand the data flows of your
application and identify those where infor-
mation used for security decisions can be
intercepted and tampered with and armor
those channels.

• Eliminate Weak
Cryptography

• Threat Modeling

CWE-494

http://cwe.mitre.org/data/definitions/494.html

1313

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

15 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify that
the system does not
import functionality
from sources that
are not under the
system’s control

[D] Do not include the capability to refer to
code that is defined, stored and controlled in
an external location outside the control mecha-
nisms of your system and that can interact with
the system and its components.

[D/T] If you absolutely must import function-
ality from external sources, make sure that
relevant server-side checks are applied to all
content generated by the imported code. Do
not trust the imported functionality “as is.”

[A] Use an application-level firewall that can
guard against this kind of vulnerability.

• Threat Modeling CWE-829

16 As a(n) architect/
developer, I want
to ensure AND
as QA, I want to
verify limitation of
a pathname to a
restricted directory
(‘Path Traversal’)

[D/T] When accepting external input that will
be used to construct a file path, remove or
invalidate special constructs like “.”, “..”, “\” and

“/”, including their many representations in
alternate character sets.

[D/T] Filter data repeatedly until all findings are
exhausted to prevent nested constructs.

[D/T] Only after cleaning up the input for
extraneous characters, make sure that the full
path received falls inside of the permitted area
by using a whitelist of possible path locations.

[D] Perform checks as close to the operation as
possible, as content may change in transit.

[D] Use language or operating system-provided
functions to create a canonical form of the path
and check it against your whitelist.

[A/D] Prefer mappings and indexed menus
instead of free-form input when choosing paths.

[D] Examine relevant findings from static code
analysis tools.

• Use Canonical
Data Formats

• Validate Input
and Output
to Mitigate
Common
Vulnerabilities

CWE-22

http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/22.html

1414

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

17 As a(n) architect/
developer, I want
to ensure AND
as QA, I want to
verify that cross-site
scripting attacks are
prevented

[D] Consider all input as malicious and filter
according to the context.

[D/T] When generating dynamic web pages,
filter the input for any browser-executable
content that is not intended (for example,
from user-originated fields in a database).
Consider all forms of input of content that
might eventually be presented to and con-
sumed by a browser, like events generated
outside the system, log messages, arguments
in a URL, form field values, etc. Perform this
filtering at server-side, close to use.

[D] When generating dynamic web pages,
encode the output to the needed character
set and explicitly declare it as part of the page.

[D] When generating dynamic web pages,
sanitize the output by properly escaping and
quoting the dynamic content in a way to
properly enforce separation of code and data
according to the environment in use.

[D] Use automated scanning tools in a cre-
dentialed mode with maximum coverage
of the application interface to test for this
vulnerability.

[D] Use one of the many available libraries that
takes cross-site scripting into account; create
and enforce a single way of filtering input for
cross-site scripting injection.

[D] Always use cookies (authentication/session)
with HttpOnly attribute.

• Use Anti-Cross
Site Scripting
(XSS) Libraries

• Validate Input
and Output
to Mitigate
Common
Vulnerabilities

CWE-79

http://cwe.mitre.org/data/definitions/79.html

1515

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

18 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify that
cross-site request
forgery attacks are
prevented

[D] Use one of the many available libraries and
frameworks that takes CSRF into account.

[D] Defend against cross-site scripting (see
Story 17).

[A/D] Add business logic and workflow steps to
critical processes in the system, and make them
out-of-band: send an email in case of password
change, send a text message when changing a
critical value.

[D/T] Log critical operations and the details of
their initiation and arguments.

[A/D] Do not use HTTP GET for any method that
effects a change in system state.

• Use Anti-Cross
Site Scripting
(XSS) Libraries

• Validate Input
and Output
to Mitigate
Common
Vulnerabilities

• Use Logging and
Tracing

CWE-352

19 As a(n) architect/
developer, I want
to ensure AND
as QA, I want to
verify proper neu-
tralization of Special
Elements used in
an OS Command
(‘OS Command
Injection’)

[D] Consider all input as malicious and filter
according to the context.

[D] Check all arguments to functions like exec()
or system() for the expected format before
executing.

[D] Limit the use of external processes; prefer
library calls.

[D] Use static code analysis tools.

[D] Consider the use of command shells
[system()] as opposed to directly calling an
executable [exec()] and its implications in com-
mand line arguments, like shell expansion.

[A/D] Reduce the attack surface by adopting
the backlog items of “Execution with Unneces-
sary Privileges.”

• Validate Input
and Output
to Mitigate
Common
Vulnerabilities

• Use Static
Analysis Tools

• Use Least
Privilege

CWE-78

http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/78.html

1616

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

20 As an architect/
developer I want
to ensure AND as
QA I want to verify
that database
queries function
as expected by
separating the data
from the query

[D] Follow best practices defined in SAFECode’s
Fundamental Practices for Secure Software
Development: “Avoid String Concatenation for
Dynamic SQL Statements.”

[A/D] Utilize common frameworks or libraries
(such as OWASP ESAPI) that provide a secure
database query functionality, as defined below.

[A/D] Use prepared statements with bind
variables (parameterized queries) that auto-
matically enforce the separation between data
and code.

[A/D] Deploy the database user accounts with
minimal access rights (least privilege) required
to perform the database action. Use separate
accounts for different access roles (read only,
read and update, etc.).

[A/D] Validate all input to ensure only allowed
(whitelisted) set of characters is processed.

[A/D] If dynamic SQL or stored procedures
with user-supplied data is required, escape all
parameters carefully using a database-specific
escaping routine.

[A/D/T] Comparable techniques apply also to
XPath, NoSQL and other database queries.

[T] Test all database queries created or used
by the application to ensure they conform to
the actual intent and structure, and cannot be
manipulated by user input.

[T] Utilize common SQL injection payloads and
static/dynamic code analysis to ensure data-
base access works as designed.

[T] Ensure only pre-defined set of characters
(whitelist) is processed by the system.

• Avoid String
Concatenation
for Dynamic SQL
Statements

• Validate Input
and Output
to Mitigate
Common
Vulnerabilities

• Use Least
Privilege

CWE-89

http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://cwe.mitre.org/data/definitions/89.html

1717

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

21 As an architect/
developer I do not
want to store AND
as QA I want to
verify that the sys-
tem does not store
hard-coded sensi-
tive information

[A/D] Store all sensitive credentials outside
of the code in an encrypted, access-restricted
configuration file or database accessible to a
very limited number of users.

[A/D] If possible, use hashes or keys instead
of passwords.

[A/D] Develop the application so that the
credentials can be changed regularly.

[A/D] All access to the credentials shall be
logged on a separate storage.

[T] Verify the credentials are protected and
access is logged.

[T] Apply black box methods, system-call
tracing, and static/dynamic analysis to detect
hard-coding weaknesses.

• Use Least
Privilege

• Eliminate Weak
Cryptography

• Use Static
Analysis Tools

CWE-798

22 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
that pointer-related
checks are in place

[D] Check the results of all functions that return
a pointer value and verify that the value is valid
(e.g., not NULL and in range).

[T] Use testing methods such as fuzzing and
automated static code analysis tools to detect
this flaw.

• Perform Fuzz/
Robustness
Testing

CWE-822
CWE-825
CWE-476

http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/822.html
http://cwe.mitre.org/data/definitions/825.html
http://cwe.mitre.org/data/definitions/476.html

1818

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

23 As an architect/
developer I want to
prevent AND as QA I
want to verify there
is no information
exposure through
error messages

[A/D] Ensure error messages only contain the
minimal understandable details the user needs
to know about the error. Do not return and
display details such as stack traces, path names,
or database query details in the response.

[A/D] Do not use the client to hide server-side
error details. The client should not make any
other changes to the message other than apply
formatting (style).

[T] Systematically cause both in-the-system
and application errors, and verify only approved
information is returned and displayed back to
the user. Ensure that not only web server errors
(e.g., 404 page not found) are generic, but also
that errors returned from the backend, such
as the application or database server, do not
contain any sensitive information (e.g., stack
traces).

[T] Use techniques such as fuzzing, static code
analysis and fault injection to cause errors.

• Validate Input
and Output
to Mitigate
Common
Vulnerabilities

CWE-209

http://cwe.mitre.org/data/definitions/209.html

1919

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

24 As an architect/
developer I want
to ensure AND as
QA I want to verify
URL redirection to
un-trusted sites is
not possible

[A] Define a strict whitelist of accepted redirec-
tion destinations. If this is not possible, ensure
only valid URLs are accepted.

[A] Deny access to all other destinations.

[A] Consider whether the user should sepa-
rately be warned/notified about the redirection
(“Leaving our site”).

[A] Consider verifying on the server side that
the destination URL shall not redirect the user
to a different destination. While sometimes this
may serve a legitimate purpose, it is often used
to fool the user, e.g., by using URL shortening
services or open redirectors on other sites to
hide the real destination. Follow all detected
redirects (up to a predefined count) and display
a warning if any/too many are detected.

[A/D] If possible, use mapping to ensure
the destination URL is retrieved from a safe
repository, such as having “destination=123” to
correspond with a certain predefined URL.

[A/D] If displaying the URL back to the user,
ensure it is sanitized via input validation and
cross-site scripting prevention mechanisms (see
Story 17), as defined in this document and other
common best practices.

[T] Verify redirection can only take the user to
approved destinations.

[T] If there is no approved list, ensure no
cross-site scripting attacks can take place (see
Story 17) by testing with malicious URLs (e.g.,
containing JavaScript or malformed payload).

• Validate Input
and Output
to Mitigate
Common
Vulnerabilities

• Use Anti-Cross
Site Scripting
(XSS) Libraries

CWE-601

http://cwe.mitre.org/data/definitions/601.html

2020

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

25 As an architect/
developer I want to
release a resource
AND as QA I want
to ensure resources
are released after
effective lifetime

[A] If possible, use a language that automati-
cally handles garbage collection for de-allocated
objects.

[D] Consistently free all resources that have
been reserved after they are no longer needed.

[D/T] Verify that any failure in resource
allocation places the system into a safe and
recoverable posture and all throttling mecha-
nisms function as intended.

[D] Deploy built-in resource allocation limits in
frameworks and platforms.

[T] Test various parts of the system to ensure it
is robust throughout.

[T] Use methodologies such as static code
analysis, load testing and fuzzing to identify
unreleased resources.

• Use a Current
Compiler Toolset

• Use Static
Analysis Tools

• Perform Fuzz/
Robustness
Testing

CWE-772

26 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
that resources are
initialized where
necessary

[A] Consider using languages/frameworks that
avoid these issues.

[A/D] Ensure variables are properly initialized,
especially when utilizing data from un-trusted
sources.

[T] Search for improperly initialized resources
causing unusual error conditions in the system,
using, for example, a static analysis tool,
stress-testing, fuzzing, fault injection, and/or
appropriate compiler settings.

• Use a Current
Compiler Toolset

• Use Static
Analysis Tools

• Perform Fuzz/
Robustness
Testing

CWE-456

http://cwe.mitre.org/data/definitions/772.html
http://cwe.mitre.org/data/definitions/456.html

2121

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

27 As an architect/
developer I want
to prevent AND as
QA I want to verify
controls against
unauthorized access
to user accounts by
password guessing

[A] Ensure access restrictions are imposed after
a predetermined number of unsuccessful login
attempts.

[A/D] Prompt the offending user with addi-
tional challenges, such as CAPTCHA or other
intensive tasks before allowing to try again. If
the attempts continue, shorten the cycle and
increase the computational cost and complexity.

[A/D] Increase the subsequent response times
to slow down the attack.

[A/D] Raise an alarm to the system administra-
tion team.

[A/D] Lock the targeted account.

[A/D] Potentially release the account lock after
a defined time, or require further action to
re-enable the account.

[A/D] Disable access by the violating user at the
appropriate level: IP blocking (may cause denial
of service to legitimate users), page redirection
or session termination.

[A/D] Log the failed login attempt, account lock-
ing and reopening of an account with sufficient
detail.

[A] Consider also alternative misuse cases,
e.g., where a single password is tested against
multiple accounts.

[T] Verify the implemented controls function as
designed. Think of/test new ways of bypassing
them.

• Use Logging and
Tracing

• Threat Modeling

CWE-307

http://cwe.mitre.org/data/definitions/307.html

2222

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

28 As an architect/
developer I want to
ensure AND as QA
I want to verify the
user is protected by
robust authentica-
tion and session
management

[A] Define which areas of the application
require authentication and authorization.

[A] Utilize, as much as possible, common, robust
authentication and session management solu-
tions provided by platforms or frameworks.

[A/D] Ensure credentials and sensitive session
information is always transported over a secure
channel such as the latest available version of
TLS.

[A/D] Prevent guessing or testing for existing
usernames. If you must have this functionality,
impose, e.g., throttling limits to prevent mass-
harvesting of usernames.

[A/D] Ensure, in cases of failed authentication
attempts, the information returned to the user
does not give away sensitive information such
as whether the user account exists or not.

[A/D] Ensure no channels exist to the system
that have a weaker protection level than the
rest of the channels. For example, if a service
can be accessed from both the web browser
and a native mobile application, they both
should utilize a similar level of authentication
and session management.

[A/D] Ensure password or username brute force
protection is built in as specified in Story 27 or
other common best practices.

[A/D] Ensure authentication and session
management is enforced at all times (where
needed).

[A/D] Impose session expiration.

[A/D] Follow best practices (e.g., OWASP Session
Management Cheat Sheet) to prevent session
management attacks.

[A] Provide users convenient access to logout.

continued on next page

• Use Least
Privilege

• Threat Modeling

CWE-306

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://cwe.mitre.org/data/definitions/306.html

2323

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

continued from previous page

[A] Ensure sessions are terminated on the server
side once they expire or the user logs out.

[A] Provide a secure method for recovering
forgotten usernames or passwords. Do not
display whether a particular username exists in
the system.

[A] If using email as username, consider provid-
ing a nickname in cases where the username
is publicly used to identify the user. Examples
are discussion forums or software feedback/
ratings pages.

[A] Utilize CAPTCHA or similar complex meth-
ods to slow down repeated attack attempts.

[A/D] For sensitive transactions, consider requir-
ing re-authentication.

[A/D] For administrative functionality, consider
using strong (multi-factor) authentication and
separate, private channels. Consider providing
security-conscious normal users a stronger
authentication mechanism utilizing, e.g.,
another channel such as text messages.

[A/D] Consider preventing the browser to cache,
e.g., the password and/or username.

[A/D] If providing a “remember me” functional-
ity, make that optional for the user (opt-in) and
use a separate secure cookie. Use expiration
for this option that balances security and user
convenience.

[T] Test all of the defined features by using
static code analysis, manual methods (comple-
mented with the help from security experts),
and web application scanners.

For more complete explanation of issues and
test cases, please refer, e.g., to OWASP’s Testing
Project, Authentication Cheat Sheet and Session
Management Cheat Sheet.

https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Testing_Project
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

2424

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

29 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify that
strong encryption
is used for sensitive
information

[A] Identify data that should be classified as
“sensitive.” Some examples of sensitive data
include (but are not limited to):

• Login credentials and tokens

• Cryptographic private keys

• Financial data such as credit card or
bank account numbers, balances, or loan
applications

• Personal health data and medical records

• Sensitive personally identifiable information
(PII) including government identification
numbers (such as Social Security numbers)

[A/D/T] Use secure channels (such as SSL/TLS
or IPsec) to transmit sensitive data across trust
boundaries.

[A/D/T] Encrypt sensitive data when “at rest,”
i.e., when persisted to a file or other data store.

[A/D/T] Control access to decryption keys.

[A/D] Do not hardcode keys into application
code.

[A/D/T] Use strong cryptographic algorithms
to encrypt data, use cryptographically strong
random number generators to generate initial-
ization vectors for encryption routines.

[A/D] Use strong key derivation functions (such
as PBKDF) when generating encryption keys
from user-provided passwords.

[A/D/T] Tokenize sensitive data whenever
possible.

• Eliminate Weak
Cryptography

CWE-311

http://cwe.mitre.org/data/definitions/311.html

2525

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

30 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify that
sufficient transport
layer protection
exists

[A] Always use secure channels (such as SSL/
TLS) to transmit authentication credentials.

Always use secure channels to transmit authen-
tication tokens, including HTTP authentication
cookies. All resources served to an authenti-
cated user should be performed over a secure
channel.

[A/D/T] As a defense-in-depth measure, apply
the “secure” attribute to HTTP authentication
cookies to help prevent them from being sent
over non-SSL/TLS connections.

• Eliminate Weak
Cryptography

• Threat Modeling

CWE-759

31 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
that hashing uses a
random salt

[A/D/T] When designing code to compare
stored hashes to computed hashes (for example,
when verifying a user’s password in an authen-
tication attempt), always store and append a
per-hash unique, random salt value in order to
hamper rainbow table attacks.

• Eliminate Weak
Cryptography

CWE-327

32 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify that
the cryptographic
algorithm used is
not broken or risky

[A] Always use vetted, industry-standard
cryptographic algorithms to protect data. Do
not attempt to develop your own algorithms.

[A] Avoid using cryptographic algorithms with
known weaknesses (such as MD) or that are
beginning to show weakness (such as SHA-),
whenever possible.

[A/D] Take advantage of any cryptographic
agility features supported by your application
platform and language.

[A/D] Avoid hard-coding particular algorithms
into the application code.

[A/D] Use abstract algorithm types and instan-
tiate them from configuration files/stores.

• Eliminate Weak
Cryptography

CWE-330

http://cwe.mitre.org/data/definitions/759.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/330.html

2626

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

33 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify use of
sufficiently random
values to prevent
sensitive informa-
tion from being
seen by unauthor-
ized people

[A/D/T] Use cryptographically-strong random
number generators whenever you need to
protect a resource by making its name, identi-
fier, or other property difficult to guess. Some
examples of this include:

• Session or authentication identifier tokens

• Initialization vectors for cryptographic keys

• Temporary file or directory names

• Temporary or initial user passwords

[A] Consider using a hardware-based random
number generator for situations where ran-
domness is critical.

• Eliminate Weak
Cryptography

CWE-129

34 As a(n) architect/
developer, I want
to ensure AND as
QA, I want to verify
proper validation of
array index

[A] When possible, prefer developing in a lan-
guage with automatic array boundary checking.

[A/D/T] For languages without automatic array
boundary checking (such as C/C++):

• Periodically test the application with a static
analysis tool designed to detect potential
array index violations. Ideally this testing
would be performed against the source code
repository either on a daily or as-checked-in
basis.

• Periodically test the application interfaces
(including file and network parsing code)
with a fuzz testing tool; investigate any
crashes the fuzzer generates.

• If the language supports a function param-
eter annotation language, use it to both
clarify parameter meaning for human readers
and to assist static analysis tools.

• Compile and link your application with avail-
able automatic memory protection options
such as address space layout randomization
(ASLR) and NX (No eXecute)-bit support.

• Use a Current
Compiler Toolset

• Use Robust
Integer Opera-
tions for Dynamic
Memory Alloca-
tions and Array
Offsets

• Use Static
Analysis Tools

• Perform Fuzz/
Robustness
Testing

CWE-434

http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/434.html

2727

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

35 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify that
the system does not
permit unrestricted
upload of files with
dangerous type

[A] Ensure antivirus software is deployed to test
all user-uploaded files.

[A/D/T] Avoid storing user-supplied files in file
form on web servers; instead, store them as
binary objects in a data store.

• When this design choice is infeasible, store
the user-supplied files in a directory structure
outside of the application webroot so that
users cannot directly request them.

• When possible, change the name of the
uploaded file to a random value such as a
GUID. Do not reveal this filename to the
client.

[A/D/T] Define a “whitelist” of allowed file types
and reject any attempts to upload files of other
types.

[D/T] Review the configuration of the web
server before deploying a web application and
disable any unnecessary interpreters.

• Implement
Sandboxing

• Threat Modeling

CWE-676

http://cwe.mitre.org/data/definitions/676.html

2828

No.
Security-focused
story Backlog task(s)

SAFECode Funda-
mental Practice(s) CWE-ID

36 As a(n) architect/
developer, I want to
ensure AND as QA, I
want to verify that
the system does
not allow use of
potentially danger-
ous functions

[D/T] Periodically test the application with a
static analysis tool designed to detect dan-
gerous or risky functions for the particular
language in which the application is written.
Replace any detected dangerous functions
with their safe equivalents. Some examples
of dangerous functions include (but are not
limited to):

• C/C++:

 § strcpy

 § memcpy

• PHP:

 § eval

 § exec

• JavaScript:

 § eval

[T] Periodically test the application interfaces
(including file and network parsing code) with
a fuzz testing tool; investigate any crashes the
fuzzer generates.

[A/D/T] If they are available, compile and link
your application with any automatic memory
protection options such as address space layout
randomization (ASLR) and NX (No eXecute)-bit
support.

• Minimize Use
of Unsafe String
and Buffer
Functions

• Use a Current
Compiler Toolset

• Use Static
Analysis Tools

• Perform Fuzz/
Robustness
Testing

CWE-676

http://cwe.mitre.org/data/definitions/676.html

29

Section 2b) Operational Security Tasks
Operational tasks are not directly tied to security
stories, but are handled like continuous main-
tenance work or something requiring special
attention in a sprint. Sometimes these are not
tracked in the backlog but are part of the normal
way of working within the team. It may make sense
to use the backlog if the task ties up sprint team
resources.

As an example, the task “Resolution of critical and
high-severity issues identified by static code analy-
sis tools” might turn into “Fix and verify the critical

flaw identified by the static code analysis tool” that
would go into the backlog and eventually the Scrum
Team. The original generic task would still remain in
the backlog.

As with Section 2a, these tasks are based on the
observations the authors (or their internal peers
working in the software security domain) have
made while working with different software
development teams within their respective orga-
nizations. Representatives from across SAFECode’s
membership also reviewed these tasks to ensure
their practicality and broad applicability.

No. Operational Security Task Requirement/Recommendation

1 Configure bug tracking to track security
vulnerabilities

Requirement for software development team

2 Verify security POCs and plan for fixes Recommendation for software development team

3 Use latest compiler versions Recommendation for new code

4 Resolve critical and high severity issues
identified by static code analysis tools

Requirement for new code and recommendation
for existing code

5 Keep track of patches/fixes to third party
dependencies

Requirement for new as well as existing code

6 Keep track of patches/fixes to OS components Requirement for new as well as existing code

7 Perform stricter code review of ‘risky’ code ** Requirement for new as well as existing code

8 Use appropriate security-related flags for
compiler

Requirement for new as well as existing code

9 Continuously verify coverage of static code
analysis tools

Requirement for new as well as existing code

10 Perform (and add to testing cycle) automated
vulnerability scanner (OS and web as appropriate)

Requirement for software development team

11 Perform (and add to release cycle) automated
malware scanner on released binaries

Requirement for software development team

12 Use secure versions of communication protocols Requirement for new code and recommendation
for existing code

30

No. Operational Security Task Requirement/Recommendation

13 Ensure inclusion of security patches/fixes applied
in previous release(s)

Requirement for software development team

14 Ensure all developers have obtained secure cod-
ing training

Requirement for software development team

15 Ensure all QA engineers have obtained secure
testing training

Requirement for software development team

16 Ensure security fixes are verified by security
experts before committing them

Requirement for software development team

17 Periodically check to ensure that your SSL certifi-
cates (and all certificates above it in its chain of
trust) have not expired or been revoked

Requirement for operational team

** Type of code that fits this category is as follows:

No. Risky code category requiring a focused code review

1 Windows services and *nix daemons listening on network connections

2 Windows services/applications running as SYSTEM/Admin or *nix daemons running as root

3 Code listening on unauthenticated network ports connections

4 ActiveX controls

5 User (direct or indirect) input validation code

6 setuid root applications on *nix

7 Code that parses data from non-admin/non-root writeable files, email attachments, /temp directory,
web downloaded files, log viewer code, event viewer code, report generators, file paths values, files that
use UNC, lock files, application critical files such as config. files, dll load paths

8 Code that interfaces with third-party module(s)

9 Code that interfaces with C/C++/any ordinary executable files

10 Code dealing with authentication/authorization/encryption/any other core security features

11 Code that implements proprietary protocol OR handles proprietary implementation of standard
protocols

31

Section 3) Tasks Requiring the
Help of Security Experts
This section outlines advanced security tasks that
typically require guidance from software security
experts (in-house or consultants) for the first few
iterations or in an ongoing manner.

The tasks here behave somewhat similarly to the
ones in Section 2a and 2b, except for the ones
marked as “first few iterations” which would be
closed and thus removed from the backlog once
the team is comfortable performing that task as

needed. These types of tasks relate more to the
competencies of the team members and their way
of working than actual tasks, and might only be
needed once or twice in the backlog.

The value of tracking them in the backlog is often
time-management. For example, consider the
security task “Building a basic set of security test
cases with the assistance of a security specialist.”
The Product Owner would need to have visibility
into this as it would have a direct impact on the
throughput of the Scrum Team.

No. Security Experts to Help Frequency of Help

1 Software security training (secure coding and secure testing) Always

2 Security fix/patch validation (completeness and strength) Always

3 Performing threat modeling for new/enhanced features First few iterations

4 Conduct penetration tests on the software around beta stage First few iterations

5 Enhance existing test suite to include security test cases First few iterations

6 Perform file fuzz testing First few iterations

7 Perform network fuzz testing First few iterations

8 Third-party security assurance (module/library) First few iterations

9 Security tool recommendations and effective use (including customization) First few iterations

10 Prioritization of resolution of issues identified by code analysis tools (static
and run-time), especially for existing code

First few iterations

11 Environment hardening (development systems, building environment,
deployment)

First few iterations

12 Securing configuration, e.g., web server hardening, ACLs on folders holding
sensitive data, configuration file hardening, etc.

First few iterations

32

Appendix A) Residual Risk Acceptance
Residual risks are risks that remain after perform-
ing risk management (risk identification, risk/
threat analysis, risk mitigation). They may comprise
secondary risks, as well as accepted risks that have
a mitigation plan, contingency plan, or fallback plan.
Residual risk acceptance is the acceptance, after
scrutiny, of exposure to residual risks.

Assuming a Scrum framework, there can be at least
two distinctive residual risk acceptance gateways;
the Scrum Team, and, assuming the role exists in an
organization, the Product Owner. Depending on the
organization, there could be a hierarchically-higher
third residual risk acceptance gateway, a Business
Owner who is ultimately responsible for approving
residual risks from the overall business perspective.
Usually, the Business Owner is the Customer, with
the Product Owner being the Customer’s proxy.

To be able to decide whether a sprint is done or not
done, the Scrum Team must add security to the
criteria that determine completion of a sprint. This
criteria list is known as the “Definition of Done” and
usually consists of other non-functional needs as
well; in effect it’s a sprint-specific quality gate.

During each Sprint Review (whereby the Scrum
Team presents the result of a sprint to the Product
Owner), the team must inquire: “Given the security-
focused stories (Section 2a) and operational security
tasks (Section 2b) we picked up, can we say we’re
done from security perspective?” and subsequently
declare that the security tasks for that Sprint
Review are either “done” or “not done.” If a risk is
identified, there are two alternatives: 1) a control
that would mitigate the risk is added to the backlog;
for example, a security feature, a requirement for
creating some test cases, and/or an architectural
change; or, 2) it is accepted as residual risk. Ignoring
a risk corresponds to accepting a risk.

The capability of the Scrum Team to reason with the
Product Owner that a sprint is “done” or “not done”
from the security (and hence quality) perspective
is contingent upon empowerment from the team’s
skill competencies, maturity and its bestowed
authority and trust. Essentially this is the lowest
level gateway of residual risk acceptance (level 1).

The Product Owner has the critical role of being the
next (level 2) hierarchical residual risk acceptance
gateway above the Scrum Team. He/she needs to
approve/disapprove the residual risk based on the
following:

1. Whether all of the security features identified in
the requirements management phase have been

“done,” and

2. Whether the implementation teams have raised
any residual risks that they haven’t been able to
address.

The raised risks ought to be visible in the Soft-
ware Backlog as controls that haven’t yet been
implemented.

Since the Product Owner has visibility into the
entire software embodiment, he/she also needs to
evaluate the Scrum Team’s reasoning that the sprint
is “done” from the security perspective, and compare
that evaluation with their own past decisions in
terms of the security requirements identified from
the epic-derived features.

Additionally, the Customer for the software should
be involved in the software-level residual risk
acceptance decision.

If any remaining residual risk cannot be accepted
by the Product Owner and/or the Customer, the
code cannot be released and therefore the Product
Owner must add new tasks to the backlog to take
care of those risks.

33

Further, if there is a hierarchically higher (level 3)
residual risk acceptance gateway, i.e., a Business
Owner who is ultimately responsible for approving
residual risks from the overall business perspective,
the Business Owner would need to make that deci-
sion based on the Product Owner’s and Customer’s
software-level residual risk acceptance decision
with supporting substantiation.

Glossary
Business Owner: Usually the customer who dictates
the overall business objective of the system/applica-
tion being developed.

Critical Resource: Any kind of system object and/or
actor whose content or existence may impact the
correct function of the system, and/or the confiden-
tiality and integrity of its data. For example, an IPC
semaphore used for synchronizing resources, or a
file containing password hashes.

CWE-ID: Common Weakness Enumerations
http://cwe.mitre.org/
Created by MITRE Corp., CWE provides a unified,
measurable set of software weaknesses that can
help enable more effective discussion, description,
selection and use of software security practices.

PCI DSS: Payment Card Industry Data Security
Standard
https://www.pcisecuritystandards.org/
security_standards/
This standard was created to increase controls
around cardholder data to reduce credit card
fraud via its exposure. Compliance is a must for
organizations that handle cardholder information
in any form.

OWASP: Open Web Application Security Project is
a free, open-to-all community with local chapters
worldwide aiming to improve the security of web
applications.

POC: Proof-of-Concept is a realization of a certain
method or idea to demonstrate its feasibility.
Security POC is a working exploit of a vulnerability
observed in a system/application.

Product Owner: Usually someone from marketing,
product management, or anyone with a solid under-
standing of users, the market place, the competition,
and of future trends for the domain or type of
system/application being developed. This person is
responsible for prioritizing the software backlog.

References
• SAFECode’s Fundamental Practices for Secure

Software Development

• 2011 CWE/SANS Top 25 Most Dangerous Develop-
ment Errors

• 2011 CWE/SANS 16 Weakness On the Cusp

• OWASP Top 10

• Agile Development using Microsoft’s Security
Development Lifecycle

• Security in Agile PLC – Practical Navigational Aid
for Speed Boats

• Software Security in Agile Product Management

http://cwe.mitre.org
https://www.pcisecuritystandards.org/security_standards/
https://www.pcisecuritystandards.org/security_standards/
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://cwe.mitre.org/top25/#Listing
http://cwe.mitre.org/top25/#Listing
http://cwe.mitre.org/top25/cusp.html
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.microsoft.com/security/sdl/discover/sdlagile.aspx
http://www.microsoft.com/security/sdl/discover/sdlagile.aspx
http://www.sourceconference.com/barcelona/speakers_2010.asp#vishal
http://www.sourceconference.com/barcelona/speakers_2010.asp#vishal
http://www.fokkusu.fi/agile-security/

34

About SAFECode
The Software Assurance Forum for Excellence in Code
(SAFECode) is a non-profit organization exclusively
dedicated to increasing trust in information and
communications technology products and services
through the advancement of effective software
assurance methods. SAFECode is a global, industry-
led effort to identify and promote best practices for
developing and delivering more secure and reliable
software, hardware and services. Its members include
Adobe Systems Incorporated, EMC Corporation, Juniper
Networks, Inc., Microsoft Corporation, Nokia, SAP AG,
Siemens AG and Symantec Corp.

For more information, please visit www.safecode.org.

Product and service names mentioned herein are the
trademarks of their respective owners.

SAFECode
Software Assurance Forum for Excellence in Code

(p) +1 781-876-8833 (f) +1 781-224-1239

feedback@safecode.org

www.safecode.org

Twitter: @SAFECodeForum
Facebook: www.facebook.com/SAFECode

© 2012 Software Assurance Forum for Excellence in Code
(SAFECode)

PRIMARY AUTHORS

Vishal Asthana, Symantec Corporation
vishal_asthana@symantec.com

Izar Tarandach, EMC Corporation
izar.tarandach@rsa.com

Niall O’Donoghue, Nokia Corporation
niall.odonoghue@nokia.com

Bryan Sullivan, Microsoft Corporation
bryans@microsoft.com

Mikko Saario, Nokia Corporation
mikko.saario@nokia.com

CONTRIBUTORS

Reeny Sondhi, EMC Corporation
reeny.sondhi@emc.com

Edward Bonver, Symantec Corporation
edward_bonver@symantec.com

Matthew Coles, EMC Corporation
matthew.coles@emc.com

http://www.safecode.org
http://www.safecode.org
http://twitter.com/safecodeforum
http://www.facebook.com/SAFECode

	Problem Statement and Target Audience
	Overview
	Assumptions

	Section 1) Agile Development Methodologies and Security
	How to Choose the Security-focused Stories and Security Tasks?
	Story and Task Prioritization Using “Security Debt”
	Residual Risk Acceptance

	Section 2a) Security-focused Stories and Associated Security Tasks
	Section 2b) Operational Security Tasks
	Section 3) Tasks Requiring the Help of Security Experts
	Appendix A) Residual Risk Acceptance
	Glossary
	References
	About SAFECode

