

Fundamental Practices for

Secure Software Development

2ND EDITION

A Guide to the Most Effective Secure
Development Practices in Use Today

February 8, 2011

Editor Stacy Simpson, SAFECode

Authors

Mark Belk, Juniper Networks

Matt Coles, EMC Corporation

Cassio Goldschmidt, Symantec Corp.

Michael Howard, Microsoft Corp.

Kyle Randolph, Adobe Systems Inc.

Mikko Saario, Nokia

Reeny Sondhi, EMC Corporation

Izar Tarandach, EMC Corporation

Antti Vähä-Sipilä, Nokia

Yonko Yonchev, SAP AG

ii

Foreword

In 2008, the Software Assurance Forum for Excel-

lence in Code (SAFECode) published the first version

of this report in an effort to help others in the

industry initiate or improve their own software

assurance programs and encourage the industry-

wide adoption of what we believe to be the most

fundamental secure development methods. This

work remains our most in-demand paper and has

been downloaded more than 50,000 times since its

original release.

However, secure software development is not only a

goal, it is also a process. In the nearly two and a half

years since we first released this paper, the process

of building secure software has continued to evolve

and improve alongside innovations and advance-

ments in the information and communications

technology industry. Much has been learned not

only through increased community collaboration,

but also through the ongoing internal efforts of

SAFECode’s member companies. This 2nd Edition

aims to help disseminate that new knowledge.

Just as with the original paper, this paper is not

meant to be a comprehensive guide to all possible

secure development practices. Rather, it is meant to

provide a foundational set of secure development

practices that have been effective in improving

software security in real-world implementations by

SAFECode members across their diverse develop-

ment environments.

It is important to note that these are the “practiced

practices” employed by SAFECode members, which

we identified through an ongoing analysis of our

members’ individual software security efforts. By

bringing these methods together and sharing them

with the larger community, SAFECode hopes to

move the industry beyond defining theoretical best

practices to describing sets of software engineer-

ing practices that have been shown to improve

the security of software and are currently in use at

leading software companies. Using this approach

enables SAFECode to encourage the adoption of

best practices that are proven to be both effective

and implementable even when different product

requirements and development methodologies are

taken into account.

Though expanded, our key goals for this paper

remain—keep it concise, actionable and pragmatic.

What’s New

This edition of the paper prescribes new and

updated security practices that should be applied

during the Design, Programming and Testing activi-

ties of the software development lifecycle. These

practices have been shown to be effective across

diverse development environments. While the

original also covered Training, Requirements, Code

Handling and Documentation, these areas were

given detailed treatment in SAFECode’s papers on

security engineering training and software integrity

in the global supply chain, and thus we have refined

our focus in this paper to concentrate on the core

areas of design, development and testing.

The paper also contains two important, additional

sections for each listed practice that will further

increase its value to implementers—Common

Weakness Enumeration (CWE) references and

Verification guidance.

iii

CWE References

SAFECode has included CWE references for each

listed practice where applicable. Created by MITRE

Corp., CWE provides a unified, measurable set of

software weaknesses that can help enable more

effective discussion, description, selection and use

of software security practices. By mapping our

recommended practices to CWE, we wish to provide

a more detailed illustration of the security issues

these practices aim to resolve and a more precise

starting point for interested parties to learn more.

Verification

A common challenge for those managing software

security programs is the need to verify that devel-

opment teams are following prescribed security

practices. SAFECode aims to address that challenge

with this new edition. Wherever possible, we have

included methods and tools that can be used to

verify whether a practice was applied. This is an

emerging area of work and SAFECode hopes to use

community feedback to further bolster its guidance

in this area.

Software vendors have both a responsibility and

a business incentive to ensure software security.

SAFECode has collected and analyzed the secure

development methods currently in use among its

members in order to provide others in the industry

with highly actionable advice for improving soft-

ware security. This is a living document and we plan

to continue to update it as the industry and prac-

tices evolve. Thus, SAFECode encourages feedback

and suggestions as to how we can continue to

improve this paper’s usefulness to readers.

SAFECode has published a series of papers on software

supply chain integrity that aim to help others understand

and minimize the risk of vulnerabilities being inserted into

a software product during its sourcing, development and

distribution.

The software integrity controls discussed in the papers

are used by major software vendors to address the risk

that insecure processes, or a motivated attacker, could

undermine the security of a software product as it moves

through the links in the global supply chain. The controls

aim to preserve the quality of securely developed code by

securing the processes used to source, develop, deliver and

sustain software and cover issues ranging from contrac-

tual relationships with suppliers, to securing source code

repositories, to helping customers confirm the software

they receive is not counterfeit.

Copies of The Software Supply Chain Integrity Framework:

Defining Risks and Responsibilities for Securing Software

in the Global Supply Chain and Overview of Software Integ-

rity Controls: An Assurance-Based Approach to Minimizing

Risks in the Software Supply Chain are available at

www.safecode.org.

SAFECode encourages all software developers and

vendors to consider, tailor and adopt these practices

into their own development environments. The

result of efforts like these will not only benefit

industry through a more secure technology eco-

system, but also provide a higher level of end-user

confidence in the quality and safety of software

that underpins critical operations in governments,

critical infrastructure and businesses worldwide.

http://www.safecode.org/

iv

Table of Contents

Foreword ii

What’s New ii

CWE References iii

Verification iii

Introduction 2

Secure Design Principles 2

Threat Modeling 2

CWE References 5

Verification 5

Resources 6

Use Least Privilege 7

CWE References 8

Verification 8

Resources 9

Implement Sandboxing 10

CWE References 10

Verification 10

Resources 11

Secure Coding Practices 12

Minimize Use of Unsafe String and

Buffer Functions 12

CWE References 13

Verification 14

Resources 15

Validate Input and Output to Mitigate

Common Vulnerabilities 15

CWE References 17

Verification 17

Resources 18

Use Robust Integer Operations for Dynamic

Memory Allocations and Array Offsets 19

CWE References 20

Verification 20

Resources 21

Use Anti-Cross Site Scripting (XSS) Libraries 22

CWE References 24

Verification 24

Resources 26

Use Canonical Data Formats 27

CWE References 27

Verification 28

Resources 28

v

Avoid String Concatenation for Dynamic

SQL Statements

29

Technology Recommendations 44

CWE References 29 Use a Current Compiler Toolset 44

Verification 30 CWE References 45

Resources 31 Verification 45

 Resources 46
Eliminate Weak Cryptography 32

CWE References 33 Use Static Analysis Tools 47

Verification 34 CWE References 49

Resources 35 Verification 49

 Resources 49
Use Logging and Tracing 37

CWE References 37 Summary of Practices 50

Verification 38
Moving Industry Forward 51

Resources 38

Testing Recommendations

39
Acknowledgements 51

Determine Attack Surface 39

Use Appropriate Testing Tools 39

Perform Fuzz / Robustness Testing 40

Perform Penetration Testing 41

CWE References 41

Verification 42

Resources 42

2

Introduction

A review of the secure software development

processes used by SAFECode members reveals that

there are corresponding security practices for each

activity in the software development lifecycle that

can improve software security and are applicable

across diverse environments. The examination

of these vendor practices reinforces the asser-

tion that software security must be addressed

throughout the software development lifecycle to

be effective and not treated as a one-time event or

single box on a checklist. Moreover, these security

methods are currently in practice among SAFECode

members, a testament to their ability to be inte-

grated and adapted into real-world development

environments.

The practices defined in this document are as

diverse as the SAFECode membership, spanning

cloud-based and online services, shrink-wrapped

and database applications, as well as operating

systems, mobile devices and embedded systems.

To aid others within the software industry in

adopting and using these software assurance best

practices effectively, this paper describes each

identified security practice across the software

development lifecycle and offers implementation

advice based on the experiences of SAFECode

members.

Secure Design Principles

Threat Modeling

The most common secure software design practice

used across SAFECode members is Threat Modeling,

a design-time conceptual exercise where a system’s

dataflow is analyzed to find security vulnerabilities

and identify ways they may be exploited. Threat

Modeling is sometimes referred to as “Threat

Analysis” or “Risk Analysis.”

Proactively understanding and identifying threats

and potential vulnerabilities early in the develop-

ment process helps mitigate potential design issues

that are usually not found using other techniques,

such as code reviews and static source analysis. In

essence, Threat Modeling identifies issues before

code is written—so they can be avoided altogether

or mitigated as early as possible in the software

development lifecycle. Threat Modeling can also

uncover insecure business logic or workflow that

cannot be identified by other means.

Rather than hope for an analysis tool to find

potential security vulnerabilities after code is

implemented, it’s more efficient for software

development teams to identify potential product

vulnerability points at design time. This approach

enables them to put in place defenses covering all

possible input paths and institute coding standards

to help to control the risk right from the beginning.

It is worth noting that an analysis tool lacks knowl-

edge of the operating environment in which the

system being analyzed executes.

3

By their nature, systemic architectural issues are

more costly to fix at a later stage of development.

Thus, Threat Modeling can be considered a cost-

efficient, security-oriented activity, because fixing

issues early in the process may be as easy as chang-

ing an architecture diagram to illustrate a change

to a solution yet to be coded. In contrast, addressing

similar issues after coding has begun could take

months of re-engineering effort if they are identi-

fied after code was committed, or even a major

release or a patch release if an issue was identified

even later by customers in the field.

Leveraging the full benefits of Threat Modeling

when designing systems can be challenging as

software designers and architects strive to iden-

tify all possible issues and mitigate them before

moving forward. This can be difficult to achieve,

so the focus must be on the high-risk issues that

can be identified at design time. In addition, Threat

Modeling results should be continuously updated

as design decisions change and added threats may

become relevant, and threats may be mitigated

during development or by virtue of documentation

or clearly visible use case limitations.

Threat Modeling can be done at any time in the

system’s lifecycle, but to maximize effectiveness

the process should be performed as early in the

development process as possible. Distinct software

development methodologies will have different

points where system design may change: in a

traditional “waterfall” development model, Threat

Modeling would be performed when the design

is relatively well established but has not yet been

finalized, and in the Agile model, the activity could

occur during initial design or be a recurring activity

during each iteration or sprint—when the design is

most likely to undergo change.

The process of Threat Modeling begins with the

identification of possible and commonly occurring

threats. Different SAFECode practitioners have

adopted different approaches to the task of enu-

merating threats against the design being analyzed:

• “STRIDE” – this methodology classifies threats

into 6 groups: Spoofing, Tampering, Repudia-

tion, Information Disclosure, Denial of Service

and Elevation of Privilege. Threat Modeling is

executed by looking at each component of the

system and determines if any threats that fall

into these categories exist for that component

and its relationships to the rest of the system.

• “Misuse cases” – The employment of misuse

cases helps drive the understanding of how

attackers might attack a system. These cases

should be derived from the requirements of the

system, and illustrate ways in which protective

measures could be bypassed, or areas where

there are none. For example, a misuse case

involving authentication would state “By suc-

cessively entering login names, an attacker can

harvest information regarding the validity (or

not) of such login names.”

• “Brainstorming” – if an organization does

not have expertise in building threat models,

having a security-oriented discussion where the

4

designers and architects evaluate the system is

better than not considering potential applica-

tion weaknesses at all. Such “brainstorming”

should not be considered a complete solution,

and should only serve as a stepping stone to a

more robust Threat Modeling exercise.

• “Threat library” – a format that makes threat

identification more accessible to non-security

professionals. Such a library must be open to

changes to ensure it reflects the evolving nature

of threats. Publicly available efforts like CWE

(Common Weakness Enumeration—a dictionary

of software weakness types), OWASP (Open Web

Application Security Project) Top Ten and CAPEC

(Common Attack Pattern Enumeration and

Classification that describes common methods

of exploiting software) can be used to help

build this library. Use of a Threat library can be a

quick way to take advantage of industry security

knowledge (helping teams that lack sufficient

knowledge themselves) or combine elements

of other Threat Modeling methods (such as

linking a threat to misuse cases and a STRIDE

classification).

Once identified, each threat must be evaluated

and mitigated according to the risk attached to

it (using a risk rating system such as Common

Vulnerability Scoring System (CVSSv2), for example),

the resources available, the business case and the

system requirements. This will help prioritize the

order in which threats should be addressed dur-

ing development, as well as the costs involved in

the mitigation. At times, this will drive changes

in design to enable less costly mitigations. Even

without available mitigations or design changes

introduced, a complete Threat Model provides a

good way to measure and manage security risk in

applications.

The end result of a Threat Modeling exercise may

vary, but it will certainly include an annotated

diagram of the system being evaluated, as well as a

list of the associated threats (mitigated and not).

It has been observed in some cases that Threat

Modeling as part of recurring activities in the

Software Development Lifecycle helps to drive a

culture that accepts security as an integral aspect

of software design—the benefit is cumulative, with

later iterations building on the experience of earlier

ones.

Different approaches offer varying requirements

of prior security expertise in order to achieve good

results, and it is possible to choose the one that bet-

ter suits the situation at hand, and later on change

to another approach based on the improving

awareness to security in the involved participants.

As a conceptual exercise, Threat Modeling will

highly benefit from close communication since

having all those responsible present in one location

can lead to lively, results-generating discussion.

However, geographically dispersed teams will

still be able to conduct Threat Modeling exercises

using the many means of communication at their

disposal, from remote presence setups to spread-

sheets and diagrams sent over email. The speed

of the exercise may vary, but there are no specific

5

Threat

Identified

Design

Element(s)

Mitigation Verification

Session

Hijacking

GUI Ensure ran-

dom session

identifiers of

appropriate

length

Collect session

identifiers

over a number

of sessions

and examine

distribution and

length

Tampering

with data

in transit

Process A

on server to

Process B on

client

Use SSL to

ensure that

data isn’t

modified in

transit

Assert that

communica-

tion cannot

be established

without the use

of SSL

negative impacts to the end result if the exercise

becomes a question-answer discussion using email,

for example.

Tools are available that support the Threat Model-

ing process with automated analysis of designs and

suggestions for possible mitigations, issue-tracking

integration and communication related to the

process. Some practitioners have honed their Threat

Modeling process to the point where tools are used

to automate as much of it as possible, raising the

repeatability of the process and providing another

layer of support with standard diagramming,

annotation, integration with a threat database and

test cases, and execution of recurring tasks.

CWE References

Much of CWE focuses on implementation issues,

and Threat Modeling is a design-time event. There

are, however, a number of CWEs that are applicable

to the threat modeling process, including:

• CWE-287: Improper authentication is an example

of weakness that could be exploited by a Spoof-

ing threat

• CWE-264: Permissions, Privileges, and Access

Controls is a parent weakness of many Tamper-

ing, Repudiation and Elevation of Privilege

threats

• CWE-311: Missing Encryption of Sensitive Data is

an example of an Information Disclosure threat

• CWE-400: (uncontrolled resource consumption)

is one example of an unmitigated Denial of

Service threat

Verification

A comprehensive verification plan is a direct deriva-

tive of the results of the Threat Model activity. The

Threat Model itself will serve as a clear roadmap for

verification, containing enough information so that

each threat and mitigation can be verified.

During verification, the Threat Model and the

mitigated threats, as well as the annotated archi-

tectural diagrams, should also be made available

to testers in order to help define further test cases

and refine the verification process. A review of the

Threat Model and verification results should be

made an integral part of the activities required to

declare code complete.

An example of a portion of a test plan derived from

a Threat Model could be:

http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/400.html

6

Resources

References:

• OWASP; “Open Web Application Security

Project”; http://www.owasp.org

• CWE; “Common Weakness Enumeration”;

http://cwe.mitre.org

• CAPEC; “Common Attack Pattern

Enumeration and Classification”;

http://capec.mitre.org

• CVSSv2; “Common Vulnerability Scoring

System”; http://www.first.org/cvss/

Presentations:

• AND-304: Threat Modeling: Lessons

Learned and Practical Ways To Improve Your

Software; RSA Conference 2010; Dhillon &

Shostack

Books, Articles and Reports:

• The Security Development Lifecycle; Chapter

9, “Stage 4: Risk Analysis”; Microsoft Press;

Howard & Lipner

• Software Security Assurance: State-of-the-

Art Report; Section 5.2.3.1, “Threat, Attack,

and Vulnerability Modeling and Assess-

ment”; Information Assurance Technology

Analysis Center (IATAC), Data and Analysis

Center for Software (DACS); http://iac.dtic.

mil/iatac/download/security.pdf

• Software Security; Chapter 2, “A Risk

Management Framework”; McGraw;

Addison-Wesley; 2006.

• Security Mechanisms for the Internet;

Bellovin, Schiller, Kaufman; http://www.ietf.

org/rfc/rfc3631.txt

• Capturing Security Requirements through

Misuse Cases; Sindre and Opdahl; http://

folk.uio.no/nik/2001/21-sindre.pdf

• Software Security; Chapter 8, “Abuse Cases”;

McGraw; Addison-Wesley; 2006.

Tools / Tutorials:

• The Microsoft SDL Threat Modeling Tool;

http://www.microsoft.com/security/sdl/

getstarted/threatmodeling.aspx

http://www.owasp.org/
http://cwe.mitre.org/
http://capec.mitre.org/
http://www.first.org/cvss/
http://iac.dtic.mil/iatac/download/security.pdf
http://iac.dtic.mil/iatac/download/security.pdf
http://www.ietf.org/rfc/rfc3631.txt
http://www.ietf.org/rfc/rfc3631.txt
http://folk.uio.no/nik/2001/21-sindre.pdf
http://folk.uio.no/nik/2001/21-sindre.pdf
http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx
http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx

7

Use Least Privilege

The concept of executing code with a minimum set

of privileges is as valid today as it was 30 years ago

when it was described in Saltzer and Schroeder’s

seminal paper, “The Protection of Information in

Computer Systems.” The concept of least privilege

is simple, but it can be hard to achieve in some

cases. Even though “least privilege” means different

things in different environments, the concept is the

same:

“Every program and every user of the system should

operate using the least set of privileges necessary to

complete the job.”

Least privilege is important because it can help

reduce the damage caused if a system is compro-

mised. A compromised application running with

full privileges can perform more damage than a

compromised application executing with reduced

privileges. The value of operating with reduced

privileges cannot be stressed enough.

The concept of privilege varies by operating system,

development technologies and deployment sce-

narios. For example:

• Most mobile platforms will force all non-oper-

ating system code to run in a sandbox running

with minimal privilege, but developers should

still only select the privileges or permissions

required for the application to execute correctly.

For example:

• Android requires applications to describe the

permissions needed by the application in the

application’s AndroidManifest.xml file.

• Windows Phone 7 uses WMAppManifest.xml

to describe application capabilities.

• Symbian applications can have capabilities

assigned to them.

• iOS applications have the concept of

“entitlements.”

• .NET applications can describe required permis-

sions in the app.manifest file.

• Java can do likewise in the policy file named

java.policy.

• Windows applications and services run under

an account (a Security Identifier [SID]) that is

granted group membership and privileges.

• Linux applications and daemons run under an

account that has implicit privileges.

• Some Linux distributions (e.g. MeeGo) use

capabilities derived from the now-defunct POSIX

1003.1e draft (also referred to as POSIX.1e).

• Some Linux distributions (e.g.; Fedora and

RedHat) use SELinux, which provides extensive

technologies including SIDs and labels.

• Some Linux distributions (e.g.; Ubuntu and Suse)

use AppArmor, which supports some POSIX

1003.1e draft capabilities and supports applica-

tion profiles.

8

• Grsecurity is a set of patches for Linux that

provide, amongst other security tools, role-based

access control (RBAC) mechanisms.

In short, privileges, capabilities and entitlements

determine which sensitive operations can be per-

formed by applications and users. In the interests of

security, it is imperative that sensitive operations be

kept to a minimum.

There are two development aspects of least privi-

lege that must be considered. The first is making

sure that the application operates with minimum

privileges and the second is to test the application

fully in a least privilege environment. Develop-

ers are notorious for building and smoke-testing

applications using full privilege accounts, such as

root or members of the administrators group. This

can lead to problems during deployment, which are

usually conducted in low-privilege environments.

It is strongly recommended that all developers

and testers build and test applications using least

privilege accounts.

The second point of consideration is to thoroughly

test the application in a least privilege environ-

ment to shake out least-privilege related bugs. It

is recommended that the application under test

be subject to a complete test pass and all security-

related issues noted and fixed.

Finally, a least privilege environment must include

tamper proof configuration, otherwise applica-

tions or users might be able to grant more trusted

capabilities.

CWE References

Like sandboxing, the core CWE is the following:

• CWE-250: Execution with Unnecessary Privileges

Verification

Verifying an application is running with least

privilege can be subjective, but there are some tools

that can provide details to help an engineer under-

stand which permissions and privileges are granted

to a running process:

• In Windows, Application Verifier will issue

“LuaPriv” warnings if potential least privilege

violations are detected at runtime.

• For Windows Phone 7, the Windows Phone Capa-

bility Detection Tool can help determine what

the permission set should be for a Windows

Phone 7 application.

Least privilege is typically enforced in applications

via configurable user or code permissions. Therefore,

performing regular audits or reviews of the default

permissions can be an effective means toward

ensuring least privilege in secure code. The review

can be based on a software specification, outlining

user roles or the functions of supplementary com-

ponents, or via a post-implementation validation of

the software, for example, with integration tests.

http://cwe.mitre.org/data/definitions/250.html

9

Resources

Books, Articles and Reports:

• The Protection of Information in Computer

Systems; Saltzer, Schroeder; http://www.

cs.virginia.edu/~evans/cs551/saltzer/

• nixCraft; Linux Kernel Security (SELinux vs

AppArmor vs Grsecurity); Gite; http://www.

cyberciti.biz/tips/selinux-vs-apparmor-vs-

grsecurity.html

• SAP Developer Network; Integrated Iden-

tity and User Management; http://www.

sdn.sap.com/irj/sdn/go/portal/prtroot/

com.sap.km.cm.docs/library/netweaver/

netweaver-developers-guide-2004s/

SAP%20NetWeaver%20Developer%27s%20

Guide%202004s/IUAM%20Further%20

Information.ca

• Authorizations in SAP Software: Design and

Configuration; Lehnert, Bonitz & Justice; SAP

Press; 2010.

Presentations:

• Linux Capabilities: Making Them Work; Linux

Symposium 2008; Hallyn, Morgan; http://

ols.fedoraproject.org/OLS/Reprints-2008/

hallyn-reprint.pdf

Tools / Tutorials:

• Android Manifest.permission; http://

developer.android.com/reference/android/

Manifest.permission.html

• MSDN Library; Application Manifest File for

Windows Phone; http://msdn.microsoft.

com/en-us/library/ff769509(v=VS.92).aspx

• MSDN Library; How to: Use the Windows

Phone Capability Detection Tool; http://

msdn.microsoft.com/en-us/library/

gg180730(VS.92).aspx

• MSDN Library; Windows Application Verifier;

http://msdn.microsoft.com/en-us/library/

dd371695(VS.85).aspx

http://www.cs.virginia.edu/~evans/cs551/saltzer/
http://www.cs.virginia.edu/~evans/cs551/saltzer/
http://www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.html
http://www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.html
http://www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.html
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://ols.fedoraproject.org/OLS/Reprints-2008/hallyn-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/hallyn-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/hallyn-reprint.pdf
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://msdn.microsoft.com/en-us/library/ff769509(v%3DVS.92).aspx
http://msdn.microsoft.com/en-us/library/ff769509(v%3DVS.92).aspx
http://msdn.microsoft.com/en-us/library/gg180730(VS.92).aspx
http://msdn.microsoft.com/en-us/library/gg180730(VS.92).aspx
http://msdn.microsoft.com/en-us/library/gg180730(VS.92).aspx
http://msdn.microsoft.com/en-us/library/dd371695(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd371695(VS.85).aspx

10

Implement Sandboxing

While the concept of “sandboxing” processes is not

new, the industry has seen an increase in interest

in the topic since the first version of this paper was

written.

Running a process in a user’s session on many

popular operating systems usually implies that the

process has all of the privileges and access rights to

which the user is entitled. No distinction is made

between what a user’s web browser should have

access to and what their word processing software

should have access to. This model has three risks of

abuse of those privileges:

a. Unrestricted execution of arbitrary native code

achieved via memory corruption bugs

b. Abuse of functionality using the privileges avail-

able to the user

c. Executing arbitrary code from within a man-

aged code (C#, Java, Python, Ruby etc) runtime

environment

Using a managed language, such as C# or Java,

defends against the first scenario by managing

memory on behalf of the application. Managed

runtimes also have their own sandboxes to defend

against the second scenario using policy-driven

code access security. When switching to a managed

language is not an option, such as in large legacy

code bases, sandboxing offers an alternative mitiga-

tion by utilizing operating system security features

to restrict the abilities of a sandboxed process.

Features provided by operating systems to support

sandboxing functionality include:

• Process-level memory isolation

• Integrity Levels on Windows

• Dropping process privileges

• Disabling high-privilege user accounts used by

the process

• Running each application as a unique user

• Permission Manifests

• File system ‘jails’

Applications that are installed on a large number

of systems (>1 million, for example) and process

untrusted data from the Internet are highly

encouraged to implement sandboxing. In addition,

applications that are installed as plugins to high-

risk applications like browsers should work within

the host application’s sandbox.

Many current mobile platforms run all applications

in a sandboxed environment by default.

CWE References

There is one parent CWE that relates directly to

sandboxing:

• CWE-265: Privilege / Sandbox Issues

Verification

• Ensure that all ingredients provided by the plat-

form for a sandbox are implemented correctly

http://cwe.mitre.org/data/definitions/265.html

11

by reviewing the resources below for the target

platform. One missing ingredient can render the

entire sandbox protection ineffective.

• Review the attack surface that is available from

within the sandbox. This can be accomplished

using tools like SandKit, which enumerates

all resources that are accessible from within

the sandbox. Validate that each item found

performs adequate input validation and authori-

zation checks.

• Review the sandbox policy to ensure the

least amount of access necessary is granted.

For example, review an Android application’s

androidmanifest.xml for granted permissions

that are too relaxed.

Resources

Books, Articles and Reports:

• Practical Windows Sandboxing – Part 1;

Leblanc; http://blogs.msdn.com/b/

david_leblanc/archive/2007/07/27/

practical-windows-sandboxing-part-1.

aspx

• Inside Adobe Reader Protected Mode –

Part 1 – Design; McQuarrie, Mehra,

Mishra, Randolph, Rogers; http://

blogs.adobe.com/asset/2010/10/

inside-adobe-reader-protected-mode-

part-1-design.html

Resources (continued)

Tools / Tutorials:

• Chromium Sandbox Design Document;

http://www.chromium.org/developers/

design-documents/sandbox

• OS X Sandboxing Design; http://

www.chromium.org/develop-

ers/design-documents/sandbox/

osx-sandboxing-design

• iOS Application Programming Guide:

The Application Runtime Environment;

http://developer.apple.com/library/

ios/documentation/iphone/concep-

tual/iphoneosprogrammingguide/

RuntimeEnvironment/RuntimeEnvi-

ronment.html#//apple_ref/doc/uid/

TP40007072-CH2-SW44l

• Android Security and Permissions;

http://developer.android.com/guide/

topics/security/security.html

• The AndroidManifest.xml file; http://

developer.android.com/guide/topics/

manifest/manifest-intro.html

• SandKit; http://s7ephen.github.com/

SandKit/

http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://www.chromium.org/developers/design-documents/sandbox
http://www.chromium.org/developers/design-documents/sandbox
http://www.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
http://www.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
http://www.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
http://www.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html%23/apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html%23/apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html%23/apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html%23/apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html%23/apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html%23/apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://s7ephen.github.com/SandKit/
http://s7ephen.github.com/SandKit/

12

Unsafe Function Safer Function

strcpy strcpy_s

strncpy strncpy_s

strcat strcat_s

strncat strncat_s

scanf scanf_s

sprintf sprintf_s

memcpy memcpy_s

gets gets_s

Secure Coding Practices

In this section, the focus shifts to the low-level

development-related practices used by SAFECode

members.

Minimize Use of Unsafe String

and Buffer Functions

Memory corruption vulnerabilities, such as buffer

overruns, are the bane of applications written in

C and C++. An analysis of buffer overrun vulner-

abilities over the last 10 years shows that a common

cause of memory corruption is unsafe use of string-

and buffer-copying C runtime functions. Functions

such as, but not limited to, the following function

families are actively discouraged by SAFECode

members in new C and C++ code, and should be

removed over time from older code.

• strcpy family

• strncpy family

• strcat family

• strncat family

• scanf family

• sprint family

• memcpy family

• gets family

Development engineers should be instructed to

avoid using these classes of function calls. Using

tools to search the code for these calls helps verify

that developers are following guidance and helps

identify problems early in the development cycle.

Building the execution of these tools into the

“normal” compile/build cycle relieves the develop-

ers from having to take “special efforts” to meet

these goals.

It is important to be aware of library- or operating

system-specific versions of these function classes.

For example, Windows has a functional equivalent

to strcpy called lstrcpy and Linux has a memcpy

equivalent called bcopy, to name a few, and these

too should be avoided.

Some example replacement functions include:

13

Developers using C++ should consider using the

classes built into the standard language library to

manipulate buffers and strings. For example, rather

than using strcpy or strncpy in C++, developers

should use std::string objects.

The memcpy function deserves special mention

because many developers believe it is safe. It is safe

when used correctly, but if an attacker controls the

number of bytes to copy, or the developer incor-

rectly calculates the buffer size, then the function

becomes insecure. SAFECode believes that develop-

ers should move away from using memcpy in favor

of memcpy_s as the latter forces the developer to

think about the maximum destination buffer size.

Automatic use of safer functions

Both Microsoft Visual C++ and GNU gcc offer an

option to migrate some buffer-copying function

calls to safer calls if the destination buffer size is

known at compile time. Consider adding the follow-

ing definitions to the respective compiler options:

Visual C++: –D_CRT_SECURE_CPP_OVERLOAD_

STANDARD_NAMES=1

gcc: –D_FORTIFY_SOURCE=2 –O2

Some SAFECode members note that using these

options can make code review more complex

because the resulting object code differs from the

source code. However, the benefit of using these

options is high as in many cases over 50 percent of

insecure functions are migrated to safer function

calls in legacy code for very little engineering effort.

CWE References

There are many CWE entries that related to

memory- and buffer-related issues, including:

• CWE-119: Improper Restriction of Operations

within the Bounds of a Memory Buffer

• CWE-120: Buffer Copy without Checking Size of

Input (‘Classic Buffer Overflow’)

• CWE-805: Buffer Access with Incorrect Length

Value

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/805.html

14

Verification

The following tools and techniques can be used to verify this practice is used.

Tool or Technique Outcome

banned.h No function deprecation warnings when compiling with this header

Coverity No warnings from the “OVERRUN_STATIC” checker

Fortify SCA 360 C/C++: Buffer Overflow

None of the following warnings:

C/C++: Format String

C/C++: Buffer Overflow (Off-by-One)

C/C++: Buffer Overflow (Signed Comparison)

C/C++: Out-of-Bounds Read

C/C++: Out-of-Bounds Read (Off-by-One)

C/C++: Out-of-Bounds Read (Signed Comparison)

Klocwork No warnings from the “NNTS”, “NNTS.TAINTED”, “SV.STRBO.GETS”, “SV.STRBO.

UNBOUND_COPY”, “SV.STRBO.UNBOUND”, ”SPRINTF” checkers

Microsoft Visual C++ None of the following warnings:

C4996

The following require the code to be compiled with /analyze:

C6029

C6053

C6057

C6059

C6200

C6201

C6202

C6203

C6204

RATS No “Severity: High” warnings

15

Resources

Books, Articles and Reports:

• Please Join Me in Welcoming memcpy()

to the SDL Rogues Gallery; http://blogs.

msdn.com/b/sdl/archive/2009/05/14/

please-join-me-in-welcoming-memcpy-

to-the-sdl-rogues-gallery.aspx

Presentations:

• strlcpy and strlcat – Consistent, Safe,

String Copy and Concatenation; USENIX

99; Miller, de Raadt; http://www.usenix.

org/events/usenix99/millert.html

Tools / Tutorials:

• banned.h; http://www.microsoft.

com/downloads/en/details.

aspx?FamilyID=6aed14bd-4766-4d9d-

9ee2-fa86aad1e3c9

• Strsafe.h; http://msdn.microsoft.com/

en-us/library/ms647466(VS.85).aspx

• SafeStr; https://buildsecurityin.us-cert.

gov/bsi/articles/knowledge/coding/271-

BSI.html

Validate Input and Output to

Mitigate Common Vulnerabilities

Checking the validity of incoming data and rejecting

non-conformant data can remedy the most com-

mon vulnerabilities that lead to denial of service,

data or code injection and misuse of end user data.

In some cases, checking data validity is not a trivial

exercise; however, it is fundamental to mitigating

risks from common software vulnerabilities.

Checking the validity of outgoing data can remedy

many web-based vulnerabilities, such as cross site

scripting, as well as mitigate information leakage

issues.

Data enter and exit an application in the form

of a byte stream, which is then interpreted into

variables with specific parameters for length and

data type. Input validation refers to checking data

validity before it is processed by the application,

whereas output validation refers to validating appli-

cation data after it is processed, with the purpose of

matching the expectations of its intended recipient.

For successful data validation, the variable’s con-

tents should be validated according to the following

guidelines:

• Input variable must be checked for existence

and for conformance to specified data lengths.

• Data must be normalized, or transformed into

its simplest and shortest representation. Also

referred to as canonicalization. This topic is

discussed in more detail in “Use Canonical Data

Formats” on page 27.

http://blogs.msdn.com/b/sdl/archive/2009/05/14/please-join-me-in-welcoming-memcpy-to-the-sdl-rogues-gallery.aspx
http://blogs.msdn.com/b/sdl/archive/2009/05/14/please-join-me-in-welcoming-memcpy-to-the-sdl-rogues-gallery.aspx
http://blogs.msdn.com/b/sdl/archive/2009/05/14/please-join-me-in-welcoming-memcpy-to-the-sdl-rogues-gallery.aspx
http://blogs.msdn.com/b/sdl/archive/2009/05/14/please-join-me-in-welcoming-memcpy-to-the-sdl-rogues-gallery.aspx
http://www.usenix.org/events/usenix99/millert.html
http://www.usenix.org/events/usenix99/millert.html
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6aed14bd-4766-4d9d-9ee2-fa86aad1e3c9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6aed14bd-4766-4d9d-9ee2-fa86aad1e3c9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6aed14bd-4766-4d9d-9ee2-fa86aad1e3c9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6aed14bd-4766-4d9d-9ee2-fa86aad1e3c9
http://msdn.microsoft.com/en-us/library/ms647466(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms647466(VS.85).aspx
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/271-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/271-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/271-BSI.html

16

• Data must be checked for conformance with

data types specified by the application and its

output recipients.

• For fields with clear value ranges, data must be

checked for conformance with a specified value

range.

• A whitelist filter should be applied to limit input

to allowed values and types. For data where

defining such a whitelist is not possible, the

data validation should be performed against a

blacklist of disallowed values and data types.

A whitelist is a list or register of data elements and

types that are explicitly allowed for use within the

context of a particular application. By contrast, a

blacklist is a list or register of data elements and

types that are explicitly disallowed for use within a

particular application. Whitelisting typically con-

strains the application inputs to a pre-selected list

of values, whereas blacklisting gives more freedom

and rejects only the banned data elements and/or

types. Applications should not rely solely on using

blacklists as there are often many ways around

the list using various escaping mechanisms. This is

especially true for web-based applications.

Another approach with greater flexibility is to

use data validating libraries for input and output

validation and cleanup during development. Such

data validating libraries are available for almost all

programming languages and application platforms.

To be effective, this approach requires disciplined

application of data validation to all input and out-

put. The implementation of data validation libraries

should be supported by an explicit requirement

in a secure development standard or specification

document.

In some user applications types, notably web-based

applications, validating and/or sanitizing output

is critical in mitigating classes of attacks against

user applications, arising from vulnerabilities such

as cross-site scripting, HTTP response splitting and

cross-site request forgery.

For applications running on a remote server and

consumed over the network from a user client, data

validation should take place on the server. Imple-

menting data validation within the user client can

be bypassed and is discouraged. If data validation at

the user client can’t be avoided, it should be associ-

ated with data validation at the server application

and the corresponding error handling.

Data validation should also not be neglected for

applications that exchange data with other appli-

cations without user interaction, particularly for

applications that expose functions via remotely

callable interfaces—either via proprietary or

standardized protocols such as SOAP, REST or others.

Interfaces that accept text and structured XML data,

can use regular expressions or string comparisons

for validation against data type descriptors.

17

Last but not least, nontransparent and harder-to-

validate binary or encoded data should at minimum

be checked for data length and field validity.

Additionally, the source of the binary data may be

verified with the use of digital signatures. The use

of digital signatures as a data validation method

should, in general, be deployed for data exchanges

with integrity protection requirements, such as the

exchanges in banking transactions. In these cases,

signature validation should be the very first check

that is applied.

CWE References

Input and output validation is often the parent

issue that leads to many classes of vulnerability

such as XSS, buffer overruns and cross-site request

forgery. CWE captures the high-level nature of

this weakness in a number of CWEs including the

following:

• CWE-20: Improper Input Validation

• CWE-183: Permissive Whitelist

• CWE-184: Incomplete Blacklist

• CWE-625: Permissive Regular Expression

Verification

An effective way to verify this practice is to look for

the existence and use of validation methods within

the application. The specific methods should be

described in secure development guidelines, requir-

ing the use of libraries or manual input and output

verification and when they should be used.

The verification of the proper application of the

recommended methods can be performed via

standardized QA methods such as code reviews

or automated code scanning tools. Verification

should be performed during the active application

development phase, ideally in close collaboration

with interface definitions during application design

phases.

http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/183.html
http://cwe.mitre.org/data/definitions/184.html
http://cwe.mitre.org/data/definitions/625.html

18

Resources

Books, Articles and Reports:

• Writing Secure Code 2nd Ed; Chapter 10, All

Input is Evil!; Howard, LeBlanc; Microsoft

Press.

• Protecting Your Web Apps: Two Big Mis-

takes and 12 Practical Tips to Avoid Them;

Kim, Skouis; SANS; http://www.sans.org/

reading_room/application_security/protect-

ing_web_apps.pdf

• JavaWorld; Validation with Java and XML

Schema, Part 1; Mclaughlin; http://www.

javaworld.com/javaworld/jw-09-2000/jw-

0908-validation.html?page=1

Tools / Tutorials:

• SAP Developer Network Secure Program-

ming Guides; http://www.sdn.sap.

com/irj/scn/go/portal/prtroot/docs/

library/uuid/334929d6-0a01-0010-45a9-

8015f3951d1a

• Input and Data Validation; ASP.NET;

http://wiki.asp.net/page.aspx/45/

input-and-data-validation/

• Data Validation; OWASP; http://www.

owasp.org/index.php/Data_Validation

• Flash Validators; http://code.google.com/p/

flash-validators/

• Struts; OWASP; http://www.owasp.org/

index.php/Struts

• Java Data Validation – Swing Components;

http://www.java2s.com/Code/Java/Swing-

Components/Data-Validation.htm

http://www.sans.org/reading_room/application_security/protecting_web_apps.pdf
http://www.sans.org/reading_room/application_security/protecting_web_apps.pdf
http://www.sans.org/reading_room/application_security/protecting_web_apps.pdf
http://www.javaworld.com/javaworld/jw-09-2000/jw-0908-validation.html?page=1
http://www.javaworld.com/javaworld/jw-09-2000/jw-0908-validation.html?page=1
http://www.javaworld.com/javaworld/jw-09-2000/jw-0908-validation.html?page=1
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://wiki.asp.net/page.aspx/45/input-and-data-validation/
http://wiki.asp.net/page.aspx/45/input-and-data-validation/
http://www.owasp.org/index.php/Data_Validation
http://www.owasp.org/index.php/Data_Validation
http://code.google.com/p/flash-validators/
http://code.google.com/p/flash-validators/
http://www.owasp.org/index.php/Struts
http://www.owasp.org/index.php/Struts
http://www.java2s.com/Code/Java/Swing-Components/Data-Validation.htm
http://www.java2s.com/Code/Java/Swing-Components/Data-Validation.htm

19

Use Robust Integer Operations for Dynamic

Memory Allocations and Array Offsets

There are three types of integer issues that can

result in security vulnerabilities such as buffer

overflows:

• Overflow and underflow

• Signed versus unsigned errors

• Data truncation

These integer issues can occur during arithmetic,

assignment, cast, type conversion, comparison, shift,

boolean and binary operations.

It’s important to note that this issue can apply to all

programming languages, not just C and C++.

The proper solution is to use robust integer

datatypes, such as the ones provided in the SafeInt

library, which force robust handling of all integer

operations. When this solution is not feasible

to implement, the following best practices are

recommended:

• Use unsigned integers (such as DWORD and

size_t) for array indexes, pointer offsets, and

buffer sizes.

• Use unsigned integers for while, do, and for

loops. An integer overflow can occur in the loop

during increment and decrement operations of

the index variable. These overflows may cause

either an infinite loop or reading/writing a large

number of bytes from a buffer.

• Do not use signed integers for arguments to

memory allocation functions or array offsets;

use unsigned integers instead.

• Check that the number of elements expected

(e.g.; number of bytes in a request) is no larger

than a predetermined value that is smaller than

the largest amount of memory the application

should allocate.

Other general best practices for robust handling

of integers:

• Pay attention to the assumptions about sign

and size of data types in and across different

languages, platforms, compilers, or managed to

unmanaged code. For example, a size_t is a dif-

ferent type depending on the platform you use.

A size_t is the size of a memory address, so it is

a 32-bit value on a 32-bit platform, but a 64-bit

value on a 64-bit platform.

• Compile code with the highest possible warn-

ing level, such as /W4 when using Visual C++

or –Wall when using gcc.

• When available, enable compiler features to

detect integer issues, such as –ftrapv in gcc.

• Catch exceptions for detected integer issues if

they are provided by the platform or language.

Some languages and platforms may need a spe-

cial directive to throw exceptions for detected

integer issues. For example, use the checked

keyword in C#.

20

• It is not necessary to use robust integer opera-

tions when the integers involved cannot be

manipulated by an attacker. Assumptions like

this must be evaluated regularly as the software

evolves.

CWE References

• CWE-129: Improper Validation of Array Index

• CWE-190: Integer Overflow or Wraparound

• CWE-131: Incorrect Calculation of Buffer Size

• CWE-680: Integer Overflow to Buffer Overflow

• CWE-805: Buffer Access with Incorrect Length

Value

Verification

A blend of actions is recommended to verify that

safe integer arithmetic has been implemented:

• Review static analysis output for arithmetic

issues. Results vary widely by static analysis tool.

• Review compiler output resulting from a com-

pilation with a high warning level enabled, such

as ‘/W4’. Results vary by compiler. In general,

compilers are typically more effective at identify-

ing signed/unsigned mismatches and truncation

issues than overflows and underflows. Examples

of warnings related to integer issues include

C4018, C4389 and C4244.

• Investigate all use of pragmas that disable

compiler warnings about integer issues. Com-

ment them out, re-compile and check all new

integer-related warnings.

• Develop fuzzing models that exercise inputs

used for pointer arithmetic, such as arguments

used for payload size and array offset. Also, have

the models exercise boundary conditions, such

as –1 and 0xFFFFFFFF.

• Manually review the code for functions that

allocate memory or perform pointer arithmetic.

Make sure that the operands are bounded into a

small and well-understood range.

http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/680.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/805.html

21

Tool or

Technique

Outcome

Coverity No warnings from the “OVER-

RUN_DYNAMIC”, “MISRA_CAST”,

“NEGATIVE_RETURNS”, “REVERSE_

NEGATIVE”, “TAINTED_SCALAR”

checker

Fortify SCA

360

C/C++: Buffer Overflow (Off-by-One)

C/C++: Format String

C/C++: Out-of-Bounds Read

C/C++: Out-of-Bounds Read (Off-by-

One)

C/C++: Integer Overflow

C/C++: Buffer Overflow

C/C++: Buffer Overflow (Signed

Comparison)

C/C++: Out-of-Bounds Read (Signed

Comparison)

Klocwork No warnings from the “SV.TAINTED.

ALLOC_SIZE”, “ABV.TAINTED Buffer”,

“SV.TAINTED.CALL.INDEX_ACCESS”, “SV.

TAINTED.INDEX_ACCESS” checkers

RATS No “Severity: High” warnings

The following tools and techniques can be used to

verify this practice is used.

Resources

Books, Articles and Reports:

• Phrack; Basic Integer Overflows;

Blexim; http://www.phrack.org/issues.

html?issue=60&id=10#article

• Safe Integer Operations; Plakosh; Pear-

son Education; https://buildsecurityin.

us-cert.gov/bsi/articles/knowledge/

coding/312-BSI.html?layoutType=plain

• MSDN Library; Integer Handling with

the C++ SafeInt Class; LeBlanc; http://

msdn.microsoft.com/en-us/library/

ms972705

• The Art of Software Security Assess-

ment: Identifying and Preventing

Software Vulnerabilities; Dowd, McDon-

ald, Shuh; ISBN: 978-0321444424.

Tools / Tutorials:

• MSDN Library; Reviewing Code for

Integer Manipulation Vulnerabilities;

Howard; http://msdn.microsoft.com/

en-us/library/ms972818

http://www.phrack.org/issues.html?issue=60&id=10&article
http://www.phrack.org/issues.html?issue=60&id=10&article
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html?layoutType=plain
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html?layoutType=plain
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html?layoutType=plain
http://msdn.microsoft.com/en-us/library/ms972705
http://msdn.microsoft.com/en-us/library/ms972705
http://msdn.microsoft.com/en-us/library/ms972705
http://msdn.microsoft.com/en-us/library/ms972818
http://msdn.microsoft.com/en-us/library/ms972818

22

Use Anti-Cross Site Scripting (XSS) Libraries

This section is a web-specific variant of “Validate

input and output to mitigate common vulnerabili-

ties” above.

Cross Site Scripting (XSS) stands for a class of

vulnerabilities in applications that allow the injec-

tion of active scripting data into script-enabled

application screens. XSS-based attacks most often

target script-interpreting web clients, generally

web browsers. XSS attacks occur by maliciously

injecting script into an application that fails to

validate incoming and outgoing data. A successfully

conducted attack that exploits XSS vulnerabilities

can lead to serious security violations such as user

privilege escalation, user impersonation, code

injection, user client hijacking and even background

propagation of XSS based attacks.

A cross site scripting attack is typically executed in

the following steps:

1. Attacker identifies input fields into a web-based

application, which lack input validation and are

reused to generate static or dynamic output

in a subsequent script-enabled application

screen. Attackers may use visible or hidden input

fields in the input pages, or input parameters

exchanged via web application URLs.

2. The attacker misuses the identified input fields

to inject active scripts in the application flow.

The script code may be delivered directly in

the input field, remotely via a custom URL or

based on a previous injection. A variant of XSS,

DOM-based XSS, can also misuse input for

legitimate client-side scripts to execute mali-

cious scripts on the user client side.

3. Once the user browser displays the static or

dynamically-generated HTML, generated from

the misused input field, the malicious script

is identified as such by the user browser and

automatically executed. With its automated

browser-side execution, the script runs under

the browser privilege of the user client and is

able to access and misuse private user data that

is shared with the browser.

As a defense-in-depth measure, XSS issues can be

avoided by validating all output that may include

untrusted user client-originating input. The large

number of input and output fields in a typical web

application, however, makes manual validation of

every field impractical. As an alternative to manual

validation, the use of anti-XSS libraries, or web

UI frameworks with integrated XSS protection,

can minimize the developer’s efforts by correctly

validating application input and outputs. Anti-XSS

libraries are available for most web application plat-

forms, where exposure to XSS attacks is highest. The

resources section contains a list of the most popular

ones; further references are available from the web

platform vendor’s support documentation.

Generally, anti-XSS measures must be built in to

software applications when the following condi-

tions are present:

1. Application accepts input from users

23

2. The input is used for dynamic content genera-

tion, or is displayed to users in a subsequent

script-enabled application screen.

While XSS protections can be used to a large extent

by applying output validation techniques, input

validation addresses the root cause of the XSS

vulnerabilities. As a general rule, both must always

be used in conjunction with each other. In addition

to the techniques outlined in section “Validate

Input and Output to mitigate common vulner-

abilities,” the basic development rules to avoid XSS

vulnerabilities, as well as criteria for anti XSS library

selection, are as follows:

• Constrain Input:

• Define a codepage (such as charset =

ISO-8859-1) to narrow down problematic

characters.

• Filter meta-characters based on their

intended interpreter (e.g. HTML client, web

browser, file system, database, etc.) Used

alone, this practice is not secure; therefore

filtering meta-characters should be consid-

ered an extra defensive step.

• Normalize input, or bring it to a specified form

before its validation.

• Validate all user input at the server:

• Against a whitelist, to accept only known

unproblematic characters or data types

• If users are allowed to enter a URL within the

input field, restrict the domain of the URL and

permit only the selection of approved URLs.

• Encode all web applications outputs so that

any inserted scripts are prevented from being

transmitted to user browsers in an executable

form.

• Use HTML meta elements to clearly iden-

tify the character encoding in the output

document.

• Depending on the output context and the

encoding used, convert problematic meta-

characters originating from user input, for

example in HTML < to < , > to > , and “ to

"

• Wherever feasible, encode the whole page

displayed to the user to plain HTML. This

measure has to be used carefully as it also

deactivates capabilities for dynamic web

page content and customizations.

In addition, most of the current web browsers offer

options for deploying user client-side protection

measures, via browser plug-ins, or as in integral part

of the browser UI rendering engine. By adding an

“HTTPOnly” flag to client-side cookies, user clients

can also be instructed to limit cookie use and make

cookies unavailable to access from an active script

or one embedded in the browser objects (Java

applet, ActiveX control, etc.). Anti-virus solutions

can also validate to some extent user client-side

application inputs and detect attacks. For local

24

applications with script-enabled UIs, placing the UIs

in a sandboxed file system location can also help to

reduce the available attack surface.

Client-side protection measures against XSS are,

however, web browser or client platform specific

and their consistent use by users can’t be relied

upon. Therefore, client-side protection against XSS

should not be considered a replacement for server

side protection that uses input and output valida-

tion methods or anti-XSS libraries.

CWE References

The following CWE is relevant to XSS issues:

• CWE-79: Improper Neutralization of Input Dur-

ing Web Page Generation (‘Cross-site Scripting’)

There are many child CWEs that relate to web

vulnerabilities:

• CWE-81: Improper Neutralization of Script in an

Error Message Web Page

• CWE-82: Improper Neutralization of Script in

Attributes of IMG Tags in a Web Page

• CWE-83: Improper Neutralization of Script in

Attributes in a Web Page

• CWE-84: Improper Neutralization of Encoded

URI Schemes in a Web Page

• CWE-85: Doubled Character XSS Manipulations

• CWE-86: Improper Neutralization of Invalid

Characters in Identifiers in Web Pages

• CWE-87: Improper Neutralization of Alternate

XSS Syntax

Verification

Verification follows the basic rules laid out in the

section “Validate Input and Output to Avoid Com-

mon Security Vulnerabilities.” Detailed strategies for

mitigating XSS vulnerabilities are also listed in the

referenced CWE.

The following methods can be used to find XSS

issues:

• Automated code scanning tools with application

data flow analysis capabilities

• Code scanning or reviews to verify the applica-

tion of anti-XSS libraries or proper application

input and output validation methods

http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/81.html
http://cwe.mitre.org/data/definitions/81.html
http://cwe.mitre.org/data/definitions/82.html
http://cwe.mitre.org/data/definitions/82.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/84.html
http://cwe.mitre.org/data/definitions/84.html
http://cwe.mitre.org/data/definitions/85.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/87.html
http://cwe.mitre.org/data/definitions/87.html

25

The following tools and techniques can be used to verify this practice is used.

Tool or Technique Outcome

Fortify SCA 360 None of the following warnings:

.NET: Cross-Site Scripting (Persistent)

.NET: Cross-Site Scripting (Reflected)

.NET: Cross-Site Scripting (Poor Validation)

Java: Cross-Site Scripting (DOM)

Java: Cross-Site Scripting (Persistent)

Java: Cross-Site Scripting (Reflected)

Java: Cross-Site Scripting (Poor Validation)

JavaScript: Cross-Site Scripting (DOM)

PHP: Cross-Site Scripting (Persistent)

PHP: Cross-Site Scripting (Reflected)

PHP: Cross-Site Scripting (Poor Validation)

Python: Cross-Site Scripting (Persistent)

Python: Cross-Site Scripting (Reflected)

Python: Cross-Site Scripting (Poor Validation)

SQL: Cross-Site Scripting (Persistent)

SQL: Cross-Site Scripting (Reflected)

SQL: Cross-Site Scripting (Poor Validation)

VB/VB.NET: Cross-Site Scripting (Persistent)

VB/VB.NET: Cross-Site Scripting (Reflected)

VB/VB.NET: Cross-Site Scripting (Poor Validation)

ColdFusion: Cross-Site Scripting (Persistent)

ColdFusion: Cross-Site Scripting (Reflected)

ColdFusion: Cross-Site Scripting (Poor Validation)

Klocwork No warnings from the “NNTS “, “NNTS.TAINTED”, “SV.STRBO.GETS”, “SV.STRBO.

UNBOUND_COPY”, “SV.STRBO.UNBOUND”,_”SPRINTF” checkers

26

Resources

References:

• Apache Wicket; http://wicket.apache.org/

• OWASP Top 10 2010, Cross Site Script-

ing; http://www.owasp.org/index.php/

Top_10_2010-A2

• Wikipedia Entry; http://en.wikipedia.org/

wiki/Cross_site_scripting

• IE 8 XSS Filter; http://www.microsoft.com/

windows/internet-explorer/features/safer.

aspx

Tools / Tutorials:

• OWASP Enterprise Security API; Interface

Encoder; http://owasp-esapi-java.google-

code.com/svn/trunk_doc/latest/org/owasp/

esapi/Encoder.html

• OWASP PHP AntiXSS Library; http://www.

owasp.org/index.php/Category:OWASP_

PHP_AntiXSS_Library_Project

• Microsoft Web Protection Library; http://

www.codeplex.com/AntiXSS

• OWASP Reviewing Code for Cross-site script-

ing; http://www.owasp.org/index.php/

Reviewing_Code_for_Cross-site_scripting

• Mozilla Content Security Policy; http://

people.mozilla.org/~bsterne/content-

security-policy/index.html

• OWASP XSS (Cross Site Scripting) Prevention

Cheat Sheet; http://www.owasp.org/index.

php/XSS_%28Cross_Site_Scripting%29_Pre-

vention_Cheat_Sheet

• SAP Developer Network, Secure Program-

ming Guides; http://www.sdn.sap.

com/irj/scn/go/portal/prtroot/docs/

library/uuid/334929d6-0a01-0010-45a9-

8015f3951d1a

• MSDN Library; Microsoft Anti-Cross Site

Scripting Library V1.5: Protecting the Contoso

Bookmark Page; Lam; http://msdn.micro-

soft.com/en-us/library/aa973813.aspx

• Microsoft Code Analysis Tool .NET

(CAT.NET) v1 CTP-32 bit; http://www.

microsoft.com/downloads/en/details.

aspx?FamilyId=0178e2ef-9da8-445e-9348-

c93f24cc9f9d&displaylang=en

http://wicket.apache.org/
http://www.owasp.org/index.php/Top_10_2010-A2
http://www.owasp.org/index.php/Top_10_2010-A2
http://en.wikipedia.org/wiki/Cross_site_scripting
http://en.wikipedia.org/wiki/Cross_site_scripting
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www/
http://www.codeplex.com/AntiXSS
http://www.codeplex.com/AntiXSS
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://people.mozilla.org/~bsterne/content-security-policy/index.html
http://people.mozilla.org/~bsterne/content-security-policy/index.html
http://people.mozilla.org/~bsterne/content-security-policy/index.html
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://msdn.microsoft.com/en-us/library/aa973813.aspx
http://msdn.microsoft.com/en-us/library/aa973813.aspx
http://www.microsoft.com/downloads/en/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en

27

Use Canonical Data Formats

Where possible, applications that use resource

names for filtering or security defenses should use

canonical data forms. Canonicalization, also some-

times known as standardization or normalization,

is the process for converting data that establishes

how various equivalent forms of data are resolved

into a “standard,”“normal,” or canonical form. For

example, within the context of a windows file path,

the data file ‘Hello World.docx’ may be accessible by

any one of the following paths:

“C:\my files\Hello World.docx”

“C:\my files\Hello World.docx” (same as above, but

the ‘o’ in docx is a Cyrillic letter, U+043E)

“c:\my files\hello worLD.docx”

c:\myfile~1\hellow~1.doc

“C:/my files/Hello World.docx”

“\\?\c:\files\hello.pdf”

“%homedrive%\my files\Hello World.docx”

“\\127.0.0.1\C$\my files\Hello World.docx”

“C:\my files\.\..\my files\Hello World.docx”

“\ :-) \..\my files\\\\Hello World.docx”

Besides the use of numerous canonical formats,

attackers on the web often take advantage of

rich encoding schemes available for URL, HTML,

XML, JavaScript, VBScript and IP addresses when

attacking web applications. Successful attacks may

allow for unauthorized data reading, unauthorized

data modification or even denial of service, thus

compromising confidentiality, integrity and avail-

ability respectively.

Canonical representation ensures that the various

forms of an expression do not bypass any security

or filter mechanisms. Best design practices sug-

gest all decoding should be executed first using

appropriate APIs until all encoding is resolved. Next,

the input needs to be canonicalized. Only then can

authorization take place.

CWE References

The CWE offers many examples of canonicalization

issues, including:

• CWE-21: Pathname Traversal and Equivalence

Errors

• CWE-22: Improper Limitation of a Pathname to a

Restricted Directory (‘Path Traversal’)

• CWE-35: Path Traversal: ‘.../...//’

• CWE-36: Absolute Path Traversal

• CWE-37 Path Traversal: ‘/absolute/pathname/

here’

• CWE-38 Path Traversal: ‘\absolute\pathname\

here’

• CWE-39 Path Traversal: ‘C:dirname’

• CWE-40 Path Traversal: ‘\\UNC\share\name\’

http://cwe.mitre.org/data/definitions/21.html
http://cwe.mitre.org/data/definitions/21.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/35.html
http://cwe.mitre.org/data/definitions/36.html
http://cwe.mitre.org/data/definitions/37.html
http://cwe.mitre.org/data/definitions/37.html
http://cwe.mitre.org/data/definitions/38.html
http://cwe.mitre.org/data/definitions/38.html
http://cwe.mitre.org/data/definitions/39.html
http://cwe.mitre.org/data/definitions/40.html

28

Tool or

Technique

Outcome

Coverity No warnings from the “TAINTED_

STRING” checker

Fortify SCA

360

ColdFusion: Path Manipulation

C/C++: Path Manipulation

.NET: Path Manipulation

Java: Path Manipulation

PHP: Path Manipulation

Python: Path Manipulation

VB/VB.NET: Path Manipulation

Veracode None for the aforementioned CWE

weakness

Tests used: Automated Static

Verification

Few tools can find real canonicalization issues,

but automated techniques can find areas where

path traversal weaknesses exist. However, tuning

or customization may be required to remove or

de-prioritize path-traversal problems that are only

exploitable by the software’s administrator or other

privileged users.

Examples of automated tests include adding extra

path details (such as path traversal characters),

changing case and using escaped characters at

random when running stress tests that exercise file

access. This could be considered a form of directed

fuzz testing.

The following tools and techniques can be used to

verify this practice is used.

Resources

Books, Articles and Reports:

• Writing Secure Code 2nd Ed.; Chapter 11 “Canoni-

cal Representation Issues”; Howard & Leblanc;

Microsoft Press.

• Hunting Security Bugs; Chapter 12 “Canonical-

ization Issues”; Gallagher, Jeffries & Lanauer;

Microsoft Press.

Tools / Tutorials:

• OWASP ESAPI Access Reference Map API;

http://owasp-esapi-java.googlecode.com/svn/

trunk_doc/latest/org/owasp/esapi/AccessRefer-

enceMap.html

• OWASP ESAPI Access Control API; InterfaceAccess

Controller; http://owasp-esapi-java.googlecode.

com/svn/trunk_doc/latest/org/owasp/esapi/

AccessController.html

• Microsoft KnowledgeBase; How to Programmati-

cally Test for Canonicalization Issues with ASP.

NET; http://support.microsoft.com/kb/887459

• MSDN Library; PathCanonicalize Function (Win32);

http://msdn.microsoft.com/en-us/library/

bb773569(VS.85).aspx

• MSDN Library; .Net Framework 4 URI class;

http://msdn.microsoft.com/en-us/library/sys-

tem.uri.aspx

• SAP Developer Network Secure Program-

ming Guides; http://www.sdn.sap.com/

irj/scn/go/portal/prtroot/docs/library/

uuid/334929d6-0a01-0010-45a9-8015f3951d1a

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://support.microsoft.com/kb/887459
http://msdn.microsoft.com/en-us/library/bb773569(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb773569(VS.85).aspx
http://msdn.microsoft.com/en-us/library/system.uri.aspx
http://msdn.microsoft.com/en-us/library/system.uri.aspx
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a

29

Avoid String Concatenation for

Dynamic SQL Statements

Building SQL statements is common in database-

driven applications. Unfortunately, the most

common way and the most dangerous way to build

SQL statements is to concatenate untrusted data

with string constants. Except in very rare instances,

string concatenation should not be used to build

SQL statements. Common misconceptions include

the use of stored procedures, database encryption,

secure socket layer (SSL), and removal and duplica-

tion of single quotes as ways to fix SQL injection

vulnerabilities. While some of those techniques can

hinder an attack, only the proper use of SQL place-

holders or parameters can build SQL statements

securely.

Different programming languages, libraries and

frameworks offer different functions to create SQL

statements using placeholders or parameters. As a

developer, it is important to understand how to use

this functionality correctly as well as to understand

the importance of avoiding disclosing database

information in error messages.

Proper database configuration is a vital defense in

depth mechanism and should not be overlooked:

ideally, only selected stored procedures should

have execute permission and they should provide

no direct table access. System accounts servicing

database requests must be granted the minimum

privilege necessary for the application to run. If

possible, the database engine should be configured

to only support parameterized queries.

SQL injection flaws can often be detected using

automated static analysis tools. False positives may

arise when automated static tools cannot recognize

when proper input validation was performed. Most

importantly, false negatives may be encountered

when custom API functions or third-party librar-

ies invoke SQL commands that cannot be verified

because the code is not available for analysis.

Successful SQL injection attacks can read sensitive

data, modify data and even execute operating

system level commands.

CWE References

There is one major CWE:

• CWE-89: Improper Neutralization of Special Ele-

ments used in an SQL Command (‘SQL Injection’)

http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/89.html

30

Verification

OWASP offers pertinent testing advice to uncover SQL injection issues (see Resources). Various tools can help

detect SQL injection vulnerabilities:

Tool or Technique Outcome

Microsoft CAT.NET (using SQL Injection checks) No “A SQL injection vulnerability was found …” warnings

Microsoft Visual Studio Code Analysis No CA2100 warnings

Microsoft FxCop (Microsoft.Security category) No CA2100 warnings

W3AF (sqli and blindSqli plugins) No warnings

Fortify SCA 360 ColdFusion: SQL Injection

C/C++: SQL Injection

.NET: SQL Injection

.NET: SQL Injection (Castle Active Record)

.NET: SQL Injection (Linq)

.NET: SQL Injection (NHibernate)

.NET: SQL Injection (Subsonic)

Java: SQL Injection

Java: SQL Injection (JDO)

Java: SQL Injection (Persistence)

Java: SQL Injection (Ibatis Data Map)

JavaScript: SQL Injection

PHP: SQL Injection

Python: SQL Injection

SQL: SQL Injection

VB/VB.NET: SQL Injection

Veracode None for the aforementioned CWE weakness

Tests used: Automated Static, Automated Dynamic,

Manual

31

Resources

References:

• OWASP; SQL Injection; http://www.owasp.

org/index.php/SQL_Injection

Books, Articles and Reports:

• Giving SQL Injection the Respect it Deserves;

Howard; http://blogs.msdn.com/sdl/

archive/2008/05/15/giving-sql-injection-

the-respect-it-deserves.aspx

• Unixwiz.net; SQL Injection Attacks by

Example; Friedl; http://www.unixwiz.net/

techtips/sql-injection.html

Tools / Tutorials:

• OWASP; Guide to SQL Injection;

http://www.owasp.org/index.php/

Guide_to_SQL_Injection

• OWASP; Testing for SQL Injection;

http://www.owasp.org/index.php/

Testing_for_SQL_Injection_(OWASP-DV-005)

• Web Application Attack and Audit Frame-

work (W3AF); http://w3af.sourceforge.net/

• SAP Developer Network Secure Program-

ming Guides; http://www.sdn.sap.

com/irj/scn/go/portal/prtroot/docs/

library/uuid/334929d6-0a01-0010-45a9-

8015f3951d1a

http://www.owasp.org/index.php/SQL_Injection
http://www.owasp.org/index.php/SQL_Injection
http://blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx
http://blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx
http://blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx
http://www.unixwiz.net/techtips/sql-injection.html
http://www.unixwiz.net/techtips/sql-injection.html
http://www.owasp.org/index.php/Guide_to_SQL_Injection
http://www.owasp.org/index.php/Guide_to_SQL_Injection
http://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
http://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
http://w3af.sourceforge.net/
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a

32

Eliminate Weak Cryptography

Over the last few years, serious weaknesses have

been found in many cryptographic algorithms and

their implementation, including underlying security

protocols and random number generation. Due to

the widespread use of cryptography for securing

authentication, authorization, logging, encryp-

tion or data validation/sanitization application

processes, and their confidentiality and integrity

protection in particular, cryptography-related

weaknesses can have a serious impact on a soft-

ware application’s security.

When appropriate for communication purposes,

especially network communications, strong prefer-

ence should be given to standardized protocols that

have undergone public review—Secure Socket Layer

(SSL), Transport Layer Security (TLS), IPSec, Kerberos,

OASIS WS-Security, W3C XML Encryption and XML

Signature, etc.—rather than using low-level cryp-

tographic algorithms and developing a custom or

unique cryptographic protocol.

If low-level cryptography must be used, only

standardized cryptographic algorithms and

implementations, known to be presently secure,

should be used in software development. When

appropriate, consideration should be given to

government-approved or required algorithms. For

example, U.S. federal government customers require

FIPS 140-2 validation for products using cryptogra-

phy. FIPS 140-2 defines a set of algorithms that have

been determined to be sound, as well as an assess-

ment process that provides a level of assurance

of the quality of cryptographic implementations.

Though vendors need to account for cryptographic

export restrictions, FIPS 140-2 is an example of a

sound standard to consider.

The following algorithms and cryptographic tech-

nologies should be treated as insecure:

• MD4

• MD5

• SHA1

• Symmetric cryptographic algorithms (such as

DES, which only supports 56-bit key length)

imposing the use of keys shorter that 128-bits

• Stream ciphers (such as RC4 and ARC) should be

discouraged due to the difficulty of using stream

ciphers correctly and securely

• Block ciphers using Electronic Code Book (ECB)

mode

• Any cryptographic algorithm that has not been

subject to open academic peer review

The design, implementation and public review of

cryptographic technology has inherent technical

complexities. Even in small development projects

with easy task coordination, security weaknesses

can result from the improper use of cryptography.

To avoid common implementation errors, applica-

tions should reuse cryptographic functions as a

service, and design and implementation of propri-

etary cryptographic methods should be avoided.

The mandatory use of the common cryptographic

functions should be required by internal develop-

ment standards or policies and verified as outlined

below.

33

Application developers must use high quality

random number generation functions when creat-

ing cryptographic secrets, such as encryption keys.

Cryptographic code should never use algorithmic

random number generation functions, such as

rand() in C or C++, java.util.Random in Java and

System.Random in C# or VB.NET.

Another key element for eliminating weak cryptog-

raphy is ensuring secure management of and access

to cryptographic keys. Cryptographic keys are used

during program execution to perform encryption,

decryption and integrity verification operations.

Their exposure to malicious users via insecure

program flow, configuration or mismanagement

can result in serious weaknesses in the security of

software applications and security protocols.

Treating keys as application data with very high

security requirements and ensuring their security

throughout the application lifecycle should be

among the top priorities in secure application

development. While at rest, keys should always be

managed within a secure system configuration

database, a secure file system or hardware storage

location. Access to system keys must be granted

explicitly to applications via key storage access

control mechanisms or role assignment of the

applications’ users. After reading key material from

a secure key, storage applications shouldn’t embed

or persistently store keys or key material elsewhere.

Key material must be securely erased from memory

when it is no longer needed by the application.

Symmetric encryption keys are also frequently used

in network communication over open networks

such as the Internet. In these cases, preference

should be given to asymmetric key cryptographic

algorithms to distribute symmetric keys. These

algorithms have, by design, lower exposure of

secret key material in the remote communica-

tion, and with security protocol standardization

efforts, enable more secure distribution of keys

over specialized key distribution, management and

revocation infrastructures.

For key protection beyond the secured endpoints,

application developers should consider providing

security guides to help administrators protect and

manage keys used by the application.

CWE References

The CWE includes a number of cryptographic weak-

nesses under the following umbrella:

• CWE-310: Cryptographic Issues

Under this weakness are issues like:

• CWE-326: Inadequate Encryption Strength

• CWE-327: Use of a Broken or Risky Cryptographic

Algorithm

• CWE-329: Not Using a Random IV with CBC

Mode

• CWE-320: Key Management Errors

• CWE-331: Insufficient Entropy

• CWE-338: Use of Cryptographically weak PRNG

http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/320.html
http://cwe.mitre.org/data/definitions/331.html
http://cwe.mitre.org/data/definitions/338.html

34

Verification

Applications should be verified for compliance to

internal development standards or requirements for

the use of cryptographic operations.

During the application design phase, internal

standards should require statements about the

availability of cryptographic functions to meet the

use cases and requirements outlined in application

specification. Where cryptographic functions are

used, the verification has to focus on driving the

application planning toward prescribed guidelines

for:

• The cryptography-providing libraries that should

be used

• How the libraries should be accessed from

within the application

• How keys should be created, accessed, used and

destroyed

• Where relevant, the security protocol that

should be used for exchanging cryptographic

keys or communication

During application development, verification must

focus on checking the source code implementation

for the correct use of the prescribed guidelines and

ensuring the secure handling of keys, including

while they are in use or at rest. The verification

can be conducted either by source code review, or

by automated source code scanners. The valida-

tion should be performed in the following general

directions:

• Reuse of centrally-provided cryptographic and

random number functions

• Check against invocation of banned crypto-

graphic algorithms, known to be insecure

• Check against hard-coded or self-developed

functions for random number generation,

encryption, integrity protection or obfuscation

that shouldn’t be used

• Secure management and use of keys

• Secure configuration for keys to keys by default

• Check for proper protocol selection to appli-

cation interaction channels that require

cryptography-based confidentiality or integrity

protection

35

Tool or

Technique

Outcome

Fortify

SCA 360

None of the following warnings:

C/C++: Weak Cryptographic Hash

C/C++: Weak Cryptographic Hash (Hard-coded

Salt)

C/C++: Weak Encryption (Inadequate RSA

Padding)

C/C++: Weak Encryption (Insufficient Key Size)

Java: Weak Cryptographic Hash (Hard-coded Salt)

Java: Weak Encryption

Java: Weak Encryption (Inadequate RSA Padding)

Java: Weak Encryption (Insufficient Key Size)

PHP: Weak Cryptographic Hash

PHP: Weak Cryptographic Hash (Hard-coded Salt)

PHP: Weak Encryption (Inadequate RSA Padding)

PHP: Weak Encryption

SQL: Weak Cryptographic Hash

VB/VB.NET: Weak Cryptographic Hash

VB/VB.NET: Weak Encryption (Insufficient Key

Size)

ColdFusion: Weak Cryptographic Hash

ColdFusion: Weak Encryption

JavaScript: Weak Cryptographic Hash

JavaScript: Weak Encryption

JavaScript: Weak Encryption (Insufficient Key

Size)

Klocwork No warnings from the “SV.FIU.POOR_ENCRYP-

TION” checker

Resources

References:

• NIST; Computer Security Division

Computer Security Resource Center;

Cryptographic Module Validation

Program (CMVP); http://csrc.nist.gov/

groups/STM/cmvp/index.html

• National Institute of Standards and

Technology (NIST) Federal Information

Processing Standard (FIPS) 140-2; Secu-

rity Requirements for Cryptographic

Modules; http://csrc.nist.gov/publica-

tions/fips/fips140-2/fips1402.pdf

• RSA Laboratories; Public-Key Cryptogra-

phy Standards (PKCS); http://www.rsa.

com/rsalabs/node.asp?id=2124

• Public-Key Infrastructure (X.509)

(pkix);Description of Working Group;

http://www.ietf.org/html.charters/pkix-

charter.html

• W3C XML Encryption Work Group;

http://www.w3.org/Encryption

• W3C XML Signature Work Group;

http://www.w3.org/Signature

• Cryptographically secure pseudorandom

number generator; http://en.wikipedia.

org/wiki/Cryptographically_secure_

pseudorandom_number_generator

• Common Criteria Portal: http://www.

commoncriteriaportal.org/

http://csrc.nist.gov/groups/STM/cmvp/index.html
http://csrc.nist.gov/groups/STM/cmvp/index.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://www.rsa.com/rsalabs/node.asp?id=2124
http://www.rsa.com/rsalabs/node.asp?id=2124
http://www.ietf.org/html.charters/pkix-charter.html
http://www.ietf.org/html.charters/pkix-charter.html
http://www.w3.org/Encryption
http://www.w3.org/Signature
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/

36

Resources (continued)

Books, Articles and Reports:

• The Developer’s Guide to SAP NetWeaver

Security; Raepple; SAP Press; 2007.

• Cryptography Engineering: Design Prin-

ciples and Practical Applications; Ferguson,

Schneier and Kohno; Wiley 2010.

• The Security Development Lifecycle; Chapter

20; “SDL Minimum Cryptographic Stan-

dards”; Howard & Lipner; Microsoft Press.

• Security Engineering: A Guide to Building

Dependable Distributed Systems, Chapter

5; Cryptography; Anderson; http://www.

cl.cam.ac.uk/~rja14/book.html

• Programming Satan’s Computer; Ander-

son and Needham; http://www.cl.cam.

ac.uk/~rja14/Papers/satan.pdf

• SDL Crypto Code Review Macro; Howard;

http://blogs.msdn.com/b/michael_howard/

archive/2007/06/14/sdl-crypto-code-review-

macro.aspx

Tools / Tutorials:

• Oracle ; Java SE Security Cryptography Exten-

sion; http://www.oracle.com/technetwork/

java/javase/tech/index-jsp-136007.html

• Generic Security Services Application

Program Interface; http://en.wikipedia.org/

wiki/GSSAPI

• The Generic Security Service API Version

2 update 1; http://tools.ietf.org/html/

rfc2743

• The Generic Security Service API Version

2: C-bindings; http://tools.ietf.org/html/

rfc2744

• Randomness Requirements for Security;

http://tools.ietf.org/html/rfc4086

http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~rja14/Papers/satan.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/satan.pdf
http://blogs.msdn.com/b/michael_howard/archive/2007/06/14/sdl-crypto-code-review-macro.aspx
http://blogs.msdn.com/b/michael_howard/archive/2007/06/14/sdl-crypto-code-review-macro.aspx
http://blogs.msdn.com/b/michael_howard/archive/2007/06/14/sdl-crypto-code-review-macro.aspx
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://en.wikipedia.org/wiki/GSSAPI
http://en.wikipedia.org/wiki/GSSAPI
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2744
http://tools.ietf.org/html/rfc2744
http://tools.ietf.org/html/rfc4086

37

Use Logging and Tracing

In the event of a security-related incident, it is

important for personnel to piece together relevant

details to determine what happened, and this

requires secure logging. The first practice embraced

by SAFECode members is to use the logging fea-

tures of the operating system if possible rather than

creating new logging infrastructure. Developers

should use the Event Log APIs for Windows and

syslog for Linux and MacOS. In some cases, it is

appropriate to use non-OS logging, for example

W3C log files used by web servers. The underly-

ing infrastructure for these logging technologies

is secure as they provide tamper protection. It is

critically important that any logging system provide

controls to prevent unauthorized tampering. Some

processes, for example those running in a sandbox,

may require a broker-process to hand off event data

to the logging system because the process itself has

insufficient rights to update log files.

Developers should log enough data to trace and

correlate events, but not too much. A good example

of “too much” is logging sensitive data such as pass-

words and credit card information. For cases where

the logging of such information can’t be avoided,

the sensitive data has to be made hidden before it

is written in the log record.

Examples of minimum information that should be

logged include:

• User access authentication and authorization

events

• Unambiguous username or email address

• Client machine address (IP address)

• UTC time & date

• Event code (to allow rapid filtering)

• Event description

• Event outcome (e.g. user access allowed or

rejected)

• Changes to application security configuration

• Configuration changes to level of logged events

• Maintenance of log records for security or

system events

A good best practice is to differentiate between

monitoring logs, relevant for configuration trouble-

shooting, and audit logs, relevant for forensic

analysis for the application security issue exploita-

tion. This best practice helps avoid an overload of

log records with useless event records. Both types

of logs should be configurable during application

runtime, with the configuration allowing the defini-

tion of levels of richness of logging information.

CWE References

There are three main CWE logging references

software engineers should be aware of:

• CWE-778: Insufficient Logging

• CWE-779: Logging of Excessive Data

• CWE-532: Information Leak Through Log Files

http://cwe.mitre.org/data/definitions/778.html
http://cwe.mitre.org/data/definitions/779.html
http://cwe.mitre.org/data/definitions/532.html

38

Verification

Verification for the use of logging and tracing

should be benchmarked to industry standards,

internal development standards or the require-

ments of product security certification programs

such as Common Criteria. In the verification process,

testers should check configuration capabilities of

application logging and tracing functionalities and

keep in mind that the level of logging information

is not standardized and is subjective to the environ-

ment in which the application operates.

The methods that can be used to verify proper use

of logging and tracing include code reviews, code

scans and security assessments. Results from threat

modeling should also be used to evaluate the secu-

rity risk exposure of the application and determine

the level of necessary auditing needed.

Resources

References:

• Common Criteria for Information

Technology Security Evaluation; Part 2:

Security functional components; July

2009; http://www.commoncriteriapor-

tal.org/files/ccfiles/CCPART2V3.1R3.pdf

• IETF; RFC 5425 Transport Layer Security

(TLS) Transport Mapping for Syslog;

Miao, Ma and Salowey; http://tools.ietf.

org/search/rfc5425

Books, Articles and Reports:

• The Security Development Lifecycle;

p. 279 “Repudiation Threat Tree Pattern”;

Howard & Lipner; Microsoft Press.

Tools / Tutorials:

• SAP Help Portal; Security Audit

Log (BC-SEC); http://help.sap.com/

saphelp_nw70ehp2/helpdata/en/68/

c9d8375bc4e312e10000009b38f8cf/

frameset.htm

• SAP Help Portal; Security Audit Log of

AS Java; http://help.sap.com/saphelp_

nw70ehp2/helpdata/en/03/37dc4c25e43

44db2935f0d502af295/frameset.htm

http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf
http://tools.ietf.org/search/rfc5425
http://tools.ietf.org/search/rfc5425
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9d8375bc4e312e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9d8375bc4e312e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9d8375bc4e312e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9d8375bc4e312e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/03/37dc4c25e4344db2935f0d502af295/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/03/37dc4c25e4344db2935f0d502af295/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/03/37dc4c25e4344db2935f0d502af295/frameset.htm

39

Testing Recommendations

Testing activities validate the secure implementa-

tion of a product, which reduces the likelihood of

security bugs being released and discovered by

customers and/or malicious users. The goal is not

to add security by testing, but rather to validate the

robustness and security of the software.

Automated testing methods are intended to find

certain types of security bugs, and should be

performed on the source code of all products under

development because the cost of running such

automated tests is low. In addition to automated

tests, security test cases can be based on results

from threat modeling, misuse cases (use cases

that should be prevented), or previously identified

bugs. Often, security test cases differ from “regular”

quality assurance test cases in that instead of try-

ing to validate expected functionality, security test

cases try to uncover application failures by creating

unexpected and malicious input and circumstances.

Though security testing is sometimes done as

acceptance testing prior to making the product

available to customers, it is likely to be more cost-

effective and detect regressions and errors better

when brought to an earlier phase in the software

development lifecycle—to module or integration

testing, for example. Security test case creation

can even precede implementation, as in test or

behavior-driven development models.

Determine Attack Surface

A prerequisite for effective testing is to have an up-

to-date and complete understanding of the attack

surface. A great deal of attack surface detail can be

gathered from an up-to-date threat model. Attack

surface data can also be gathered from port scan-

ning tools and tools like Microsoft’s Attack Surface

Analysis Tool (see Resources).

Once the attack surface is understood, testing can

then focus on areas where the risk or compliance

requirements are the highest. In most cases, this

includes any protocol and parser implementa-

tions that process inputs. In some cases, parts of

the attack surface may be elsewhere than on the

immediate external interface.

Attack surface can be determined from the prod-

uct’s requirements and design by looking at the

inputs to the program—networking ports, IPC/RPC,

user input, web interfaces, and so on, or by scanning

the product, for example, with a port scanner. Peri-

odically validating the attack surface of the actual

code can also assist in preventing new vulnerabili-

ties being opened up in the system by a change

or bug fix. Products with a large attack surface or

complex input processing are more susceptible to

attack.

Use Appropriate Testing Tools

Different tools have different focuses. Fuzz testing

tools aim to detect errors in the program code,

and do not rely on knowledge of previously known

40

vulnerabilities, although new fuzz test cases should

be added to detect any newly discovered vulner-

abilities. See “Perform Fuzz/Robustness testing”

below for further information about fuzz testing.

Some network and web application vulnerability

scanners can also target programming errors. Some

of these scanners can test against known classes of

vulnerabilities such as SQL injections and cross-site

scripting vulnerabilities. Many scanning tools are

used by IT staff to verify their systems are correctly

updated and configured rather than used by devel-

opers. But some tools, especially those that focus in

finding application-level vulnerabilities, rather than

administrative issues, can be very useful at finding

security issues.

Network packet analyzers and network or web

proxies that allow man-in-the-middle attacks and

data manipulation are typically used for explor-

atory testing. The use of these tools often requires

extensive knowledge of the underlying protocols.

For example, a web proxy could be used to change

session identifiers or message headers on the fly.

Automation at all stages of the testing process

is important because automation can tirelessly

augment human work. On the other hand, the use

of automated tools will require careful setup and

tweaking to get proper results. An automated tool

that is blindly run against a system without under-

standing the system or its attack surface might not

test some parts of the system at all, or test it with

the wrong type of inputs. The risk of this happening

is typically larger if test tools are run by an external

group that may not have complete understanding

on the system.

Perform Fuzz / Robustness Testing

Fuzz testing is a reliability and security testing

technique that relies on building intentionally

malformed data and then having the software

under test consume the malformed data to see how

it responds. The science of fuzz testing is maturing

rapidly. Fuzz testing tools for standard protocols and

general use are available, but in some cases soft-

ware developers must build bespoke fuzz testers

to suit specialized file and network data formats

used by their application. Fuzz testing is an effective

testing technique because it uncovers weaknesses

in data-handling code that may have been missed

by code reviews or static analysis.

The process of fuzz testing can be lengthy, so auto-

mation is critical. It is also important that priority be

given to higher exposure entry points for fuzz test-

ing, for example, an unauthenticated and remotely

accessible TCP port, because higher exposure entry

points are more accessible to attackers.

In order to perform effective fuzz testing, select

tools that best support the networking protocols

or data formats in use. If none can be found in the

marketplace, fuzz test tools should be built. Though

the low-level process required to build effective

fuzz tools is beyond the scope of this paper, the

Resources section below provides some references

for readers interested in learning more.

41

Fuzz testing is not static. Fuzz testing cases

should evolve as new vulnerabilities are found.

For example, if a vulnerability is discovered in the

application’s file parser, a fuzz test case should be

created that would trigger that condition. This new

test case should be added to the library of tests

that are run regularly against the application. In

some cases, a new fuzzer may be needed if the data

format has not been previously fuzz tested.

Fuzz testing may be used in conjunction with other

testing types. For example, a more focused vulner-

ability scanner can be used to inject fuzz inputs to

the target product.

Penetration test cases can be based on “misuse

cases” or “attacker stories,” requirements that

specify what should not be possible.

The advantage of using competent, third-party pen-

etration testers is their breadth of experience. The

challenge is finding third-party testers that will do

an effective job for the product type, architecture or

technologies. Developing an in-house penetration

team has the advantage of maintaining internal

product knowledge from one test to the next. How-

ever, it takes time for an internal team to develop

the experience

and skill sets to

Perform Penetration Testing

The goal of penetration testing is to break the

system by applying testing techniques usually

employed by attackers, either manually or by using

attack tools. Penetration testing is a valuable tool

for discovering vulnerabilities that reside in the

system’s business logic. High-level business logic

do a complete

penetration

testing job and

penetration test-

ing should be

prioritized after

secure design

and coding and

It should be stressed that testing

is not a replacement for a develop-

ment process that helps build more

secure software, but rather that

security testing is a core part of such

a software development process.

aspects are often hard to detect from the code level.

However, it is important to realize that a penetra-

tion test cannot make up for an insecure design or

poor development and testing practices.

Some SAFECode members have dedicated penetra-

tion testing teams while others employ external

penetration and security assessment vendors. Some

SAFECode members use both in-house and external

security penetration expertise. Penetration testing

should be performed along with standard func-

tional testing as part of a comprehensive test plan.

other security testing measures.

CWE References

Security testing should cover any aspect of the

system or application and therefore should vali-

date the effectiveness of controls for all types of

weaknesses.

Fuzz testing mainly targets exception and incorrect

input handling (CWE-20). However, sometimes

the input might be valid, but mishandled by the

application.

42

First-line input handling weaknesses include, for

example:

• CWE-118: Improper Access of Indexable Resource

• CWE-703: Failure to Handle Exceptional

Conditions

• CWE-228: Improper Handling of Syntactically

Invalid Structure

• CWE-237: Improper Handling of Structural

Elements

• CWE-229: Improper Handling of Values

• CWE-233: Parameter Problems

Protocol-level security testing is useful for detect-

ing, for example, weaknesses related to CWE-693:

Protection Mechanism Failure, such as CWE-757:

Selection of Less-Secure Algorithm During Nego-

tiation (‘Algorithm Downgrade’) or CWE-345:

Insufficient Verification of Data Authenticity.

Penetration testing could, in theory, find any type

of weakness depending on the skill of the people

performing the penetration test.

Verification

The existence of security testing can be verified by

evaluating:

• Documented business risks or compliance

requirements that provide prioritization for all

testing activities. Failed or missed test cases

should be evaluated against these.

• Mitigating controls to identified threats, abuse

cases, or attacker stories as requirements

• Security test case descriptions

• Security test results

• Penetration testing or security assessment

reports

Resources

Attack surface tools include:

• Process Explorer: http://technet.micro-

soft.com/en-us/sysinternals/bb896653.

aspx

• WinObj: http://technet.microsoft.com/

en-us/sysinternals/bb896657.aspx

• Determining open ports can be done,

for example, using nmap (http://nmap.

org/)

• On Unix systems, listing open files can

be done with the lsof command, open

ports can be viewed with netstat, and

running processes and which files they

are opening can be traced with strace.

• Attack Surface Analyzer – Beta http://

www.microsoft.com/downloads/en/

details.aspx?FamilyID=1283b765-f57d-

4ebb-8f0a-c49c746b44b9

http://cwe.mitre.org/data/definitions/118.html
http://cwe.mitre.org/data/definitions/703.html
http://cwe.mitre.org/data/definitions/703.html
http://cwe.mitre.org/data/definitions/228.html
http://cwe.mitre.org/data/definitions/228.html
http://cwe.mitre.org/data/definitions/237.html
http://cwe.mitre.org/data/definitions/237.html
http://cwe.mitre.org/data/definitions/229.html
http://cwe.mitre.org/data/definitions/233.html
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896657.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896657.aspx
http://nmap.org/
http://nmap.org/
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1283b765-f57d-4ebb-8f0a-c49c746b44b9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1283b765-f57d-4ebb-8f0a-c49c746b44b9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1283b765-f57d-4ebb-8f0a-c49c746b44b9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1283b765-f57d-4ebb-8f0a-c49c746b44b9

43

Resources (continued)

Examples of software security testing refer-

ences include:

• The Art of Software Security Testing: Iden-

tifying Software Security Flaws; Wysopal,

Nelson, Dai Zovi & Dustin; Addison-Wesley

2006.

• Open Source Security Testing Methodology

Manual. ISECOM, http://www.isecom.org/

• Common Attack Pattern Enumeration and

Classification. MITRE, http://capec.mitre.

org/

Examples of common fuzz testers are listed

below. Different test tools are useful for dif-

ferent targets, and sometimes it is necessary

to build an additional tool to actually get the

malformed data to the right place (for example,

fuzzing a compressed file tests the compression

layer but not necessarily the parser for the data

that had been compressed).

• Zzuf: http://caca.zoy.org/wiki/zzuf

• Peach: http://peachfuzzer.com/

• Radamsa: https://code.google.com/p/

ouspg/wiki/Radamsa

• Untidy: http://untidy.sourceforge.net/

• MiniFuzz: http://www.microsoft.com/down-

loads/details.aspx?displaylang=en&FamilyI

D=b2307ca4-638f-4641-9946-dc0a5abe8513

• SDL Regex Fuzzer; http://www.

microsoft.com/downloads/en/details.

aspx?FamilyID=8737519c-52d3-4291-9034-

caa71855451f

Examples of protocol testing and proxy tools

include:

• Scapy: http://www.secdev.org/projects/

scapy

• PortSwigger Web Security; Burp Proxy;

http://portswigger.net/burp/proxy.html

Other fuzz testing resources include:

• Fuzzing: Brute Force Vulnerability Discovery;

Sutton, Greene, & Amini, Addison-Wesley

• Fuzzing Reader – Lessons Learned; Randolph;

December 1, 2009 http://blogs.adobe.

com/asset/2009/12/fuzzing_reader_-_les-

sons_learned.html

• BlueHat v8: Fuzzed Enough? When it’s OK to

Put the Shears Down; http://technet.micro-

soft.com/en-us/security/dd285263.aspx

• Writing Fuzzable Code; Microsoft Security

Development Lifecycle; http://blogs.msdn.

com/b/sdl/archive/2010/07/07/writing-

fuzzable-code.aspx

http://www.isecom.org/
http://capec.mitre.org/
http://capec.mitre.org/
http://caca.zoy.org/wiki/zzuf
http://peachfuzzer.com/
https://code.google.com/p/ouspg/wiki/Radamsa
https://code.google.com/p/ouspg/wiki/Radamsa
http://untidy.sourceforge.net/
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=b2307ca4-638f-4641-9946-dc0a5abe8513
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=b2307ca4-638f-4641-9946-dc0a5abe8513
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=b2307ca4-638f-4641-9946-dc0a5abe8513
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8737519c-52d3-4291-9034-caa71855451f
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8737519c-52d3-4291-9034-caa71855451f
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8737519c-52d3-4291-9034-caa71855451f
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8737519c-52d3-4291-9034-caa71855451f
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://portswigger.net/burp/proxy.html
http://blogs.adobe.com/asset/2009/12/fuzzing_reader_-_lessons_learned.html
http://blogs.adobe.com/asset/2009/12/fuzzing_reader_-_lessons_learned.html
http://blogs.adobe.com/asset/2009/12/fuzzing_reader_-_lessons_learned.html
http://technet.microsoft.com/en-us/security/dd285263.aspx
http://technet.microsoft.com/en-us/security/dd285263.aspx
http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx
http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx
http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx

44

Technology Recommendations

Use a Current Compiler Toolset

As noted earlier in this paper, memory-corruption

issues, including buffer overruns and underruns,

are a common source of vulnerabilities in C and

C++ code. It is easy to fix many memory-corruption

issues by moving away from low-level languages

like C and C++ to higher-level languages such as

Java or C# for new projects. However, using a new

programming language is much harder to do in

practice because the migration cost of training and

hiring can be expensive, and time-to-market can be

put at risk as engineers grapple with the nuances

inherent in an updated toolset. There is also a very

large base of legacy C and C++ code in the market-

place that must be maintained. Finally, for some

classes of software, C or C++ is the most appropri-

ate programming language, and the languages are

ubiquitous. Because memory-corruption vulner-

abilities in C and C++ are serious, it is important to

use C and C++ compilers that offer compile-time

and run-time defenses against memory-corruption

bugs automatically. Such defenses can make it

harder for exploit code to execute predictably and

correctly. Examples of defenses common in C and

C++ compilers include:

• Stack-based buffer overrun detection

• Address space layout randomization

• Non-executable memory

• Insecure code warnings

• Safe exception handling

• Automatic migration of insecure code to

secure code

The two most common C and C++ compilers are

Microsoft Visual C++ and GNU’s gcc. Because of the

security enhancements in newer versions of each

of these tools, software development organizations

should use:

• Microsoft Visual C++ 2008 SP1 or later. Microsoft

Visual C++ 2010 is preferred owing to better

stack-based buffer overrun defenses.

• gcc 4.4.x or later.

Software development organizations should

compile and/or link native C and C++ code with the

following options:

• Microsoft Visual C++

• /GS for stack-based buffer overrun defenses

• /DYNAMICBASE for image and stack

randomization

• /NXCOMPAT for CPU-level No-eXecute (NX)

support

• /SAFESEH for exception handler protection

• /we4996 for insecure C runtime function

detection and removal (see “Minimize unsafe

function use”)

45

• gcc

• –fstack-protector or –fstack-protector-all for

stack-based buffer overrun defenses

• –fpie –pie for image randomization

• –D_FORTIFY_SOURCE=2 and –Wformat-secu-

rity for insecure C runtime function detection

and removal (see “Minimize use of unsafe

functions”)

• –ftrapv to detect some classes of integer

arithmetic issues (see “Audit dynamic

memory allocations and array offsets”)

While this topic mainly focuses on native C and

C++ code, other toolsets can take advantage of

operating system defenses, such as address space

layout randomization and non-executable memory.

Examples include:

• Microsoft Visual C# 2008 SP1 and later (address

space layout randomization and non-executable

data memory by default)

• Microsoft Visual Basic 2008 SP1 and later

(address space layout randomization and non-

executable data memory by default)

CWE References

Most of the defenses added by the compiler or

linker address memory-corruption issues such as:

• CWE-120: Buffer Copy without Checking Size of

Input (‘Classic Buffer Overflow’)

•

CWE-119: Improper Restriction of Operations

within the Bounds of a Memory Buffer

• CWE-805: Buffer Access with Incorrect Length

Value

• CWE-129: Improper Validation of Array Index

• CWE-190: Integer Overflow or Wraparound

• CWE-131: Incorrect Calculation of Buffer Size

Verification

A Microsoft tool named the BinScope Binary

Analyzer can verify if most of the compiler and

linker options (/GS, /DYNAMICBASE, /NXCOMPAT

and /SAFESEH) are enabled in a Windows image.

The tool should yield a “Pass” for every binary

that ships with an application.

Verifying that /we4996 is enabled requires looking

for the compiler setting in all build files, or looking

for the following line of code in an application-wide

header file:

#pragma warning(3 : 4996)

Developers can verify that gcc-compiled applica-

tions are position independent with the following

command-line instruction:

readelf –h <filename> | grep Type

Position independent executables are type “DYN”

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/131.html

46

Resources

References:

• Hardened Linux from Scratch – Version

SVN-20080603; Chapter 2.6 Position

Independent Executables; http://linuxfrom-

scratch.xtra-net.org/hlfs/view/unstable/

glibc-2.4/chapter02/pie.html

Books, Articles, and Reports

• MSDN Library; Windows ISV Software Secu-

rity Defenses; Howard, Miller, Lambert &

Thomlinson; December 2010; http://msdn.

microsoft.com/en-us/library/bb430720.aspx

Presentations:

• Exploit Mitigation Techniques (in OpenBSD,

of course); The OpenBSD Project; de Raadat;

http://www.openbsd.org/papers/ven05-

deraadt/index.html

Tools / Tutorials :

• BinScope Binary Analyzer: http://www.

microsoft.com/downloads/en/details.

aspx?displaylang=en&FamilyID=90e61

81c-5905-4799-826a-772eafd4440a

• Patch: Object size checking to prevent

(some) buffer overflows: http://gcc.gnu.org/

ml/gcc-patches/2004-09/msg02055.html

• GCC extension for protecting applications

from stack-smashing attacks: http://www.

trl.ibm.com/projects/security/ssp/

• Process Explorer: http://technet.microsoft.

com/en-us/sysinternals/bb896653

http://linuxfromscratch.xtra-net.org/hlfs/view/unstable/glibc-2.4/chapter02/pie.html
http://linuxfromscratch.xtra-net.org/hlfs/view/unstable/glibc-2.4/chapter02/pie.html
http://linuxfromscratch.xtra-net.org/hlfs/view/unstable/glibc-2.4/chapter02/pie.html
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/
http://technet.microsoft.com/en-us/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896653

47

Use Static Analysis Tools

Static analysis tools are now commonly used by

development organizations, and the use of such

tools is highly recommended to find common

vulnerability types.

Static code analysis tools can help to ensure coding

mistakes are caught and corrected as soon as

possible. Tools that integrate with development

environments are usually considered easier to use

and often lead to faster bug resolution; they also

help get developers used to identifying security

defects as they develop code and before they check-

in. Using static analysis tools that are integrated

with development environments does not replace

the need for codebase-wide analysis. Developers

may have a modified view of the current code base

(e.g., on a dedicated maintenance branch) or may

only be dealing with a limited set of source code

(e.g., one module or application tier). Both scenarios

can result in false negatives resulting from limited

data flow and control flow analysis and other

problems that full-codebase and/or main branch

analysis (at product build time) would otherwise

find.

Ideally, static code analysis tools should be site

licensed to the entire development team, includ-

ing QA, making this tool as commonly used by the

development team as spell checkers that are built

in to modern word processors. Both experienced

and inexperience developers can greatly benefit

from analysis tools much like all writers take

advantage of spell checkers. Because many vulner-

abilities are hard to spot but simple to solve, it’s not

unreasonable to expect most vulnerabilities to be

fixed immediately after a routine scan completes.

Performing a Threat Model before starting a code

analysis effort can also help in the triage process, as

it can help focus auditors on critical or risky compo-

nents, getting defects from those areas prioritized

to be addressed first.

First time static analysis tools users should expect

some up-front investment to get the greatest

benefit from the tools. Before running a static

analysis tool for the first time, it is recommended

to clean the code from compiling warnings. Still, an

initial run will result in a significant list of findings.

Depending on the project size, management should

consider dedicating team resources to do the initial

triage. Once triage is complete, some findings

may be determined to be false due to contextual

information the static analysis tool does not have,

and some issues that were considered by the tool

to be less severe may be elevated in priority to be

addressed (again due to context, such as business

risk or other factors, which the tool is not aware).

Tuning the tool and the code using standard anno-

tation language (SAL) will often result in fewer false

findings, and providing training to developers can

greatly aid in the triage effort as they become more

familiar both with the tool output and software

security concepts. Maintaining a dedicated team of

security-savvy developers to review static analysis

results may be helpful for resource-constrained

48

development teams, but in the long run does the

team a disservice by masking or hiding results, both

good and bad, from the folks who created them.

Once a tree is clean of static analysis warnings,

the revision control system should be configured

to prohibit check-ins of code that introduces new

warnings and the code needs to be regularly

audited for pragmas that disable warnings. Devel-

opment teams often create a separate build system

with static analysis tools running continuously. This

practice minimizes the impact on the time it takes

to generate a new build.

Several static code analysis tools are capable of gen-

erating results even if the codebase is incomplete or

does not compile. While teams may greatly benefit

from testing code before reaching integration

checkpoints, analyzing code that does not compile

is highly discouraged as it yields suboptimal results.

It’s also important to understand that static code

analysis tools are a complement to manual code

review, not a substitute. A clean run does not

guarantee the code is perfect. It merely indicates

the code is free of well-known and well-understood

patterns.

Static analysis tools really shine when a new vulner-

ability is discovered: automated tools can perform

an initial assessment of a large body of software

a lot quicker than manual code review can be

performed. Many static analysis tools operate using

flexible and extensible rules, which can be added

to when new vulnerability classes are discovered

or modified for changes in common APIs. New

rules can often be added to account for internal

coding standards or APIs (e.g., to indicate certain

internally-developed interfaces affect the security

of code passing through them, either negatively or

positively). Caution must be taken when updating

rules between builds, especially in large complex

codebases—modifying existing rules (for analysis

bugs discovered) may result in a reduction of

findings as analysis improves, but adding new rules

for new issues may result in additional findings.

These new findings would need to be triaged and

may result in spikes in metrics not due to anything

done by developers (i.e. adding new code). Rule

updates should be planned to keep up-to-date with

changes in the security landscape without throwing

a project off its rails.

Depending on the codebase size, a full analysis can

take a considerable amount of time to run. Tuning

can help reduce the time required for analysis. It

is also recommended to reduce the initial set of

things that the tool looks for, such as to specific

security issues, or simply to security issues only

(rather than traditional quality defects, like memory

leaks, which are better discovered by other tools).

This initial modification to what is being analyzed

can help reduce analysis time and may result in

fewer findings leading to better overall adoption.

Then, as development teams get more comfortable

with the tool, they can open up the rule set to find

more issues. Some tools also perform analysis in

two or more stages, usually a build stage and a

separate analysis stage. The analysis stage can be

49

performed in parallel with other build activities

(such as linking or dynamic testing) and can take

advantage of dedicated processing power and CPU/

disk resources, which can speed up analysis.

Regardless of the tool and the type of technology

employed, no one tool today finds all faults. In fact,

all SAFECode companies employ multiple tools

throughout the development lifecycle. Furthermore,

neither static nor dynamic analysis can recognize

sophisticated attack patterns or business logic

flaws, so they should not be considered a replace-

ment for code reviews. While tools can reliably

identify vulnerability types, automated severity

metrics cannot be taken for granted as they don’t

factor business risk such as asset value, cost of

down time, potential for law suits and impact of

brand reputation.

CWE References

Static analysis tools find a plethora of security

vulnerabilities, so one could argue that many CWEs

can be found through the use of analysis tools.

Verification

Static analysis tools are themselves a form of

verification. While a clean analysis tool run does not

imply an application is secure, it is a good indicator

of rigor by the development team.

Resources

References:

• List of tools for static code analysis;

http://en.wikipedia.org/wiki/

List_of_tools_for_static_code_analysis

Books, Articles, and Reports:

• Secure Programming with Static Analysis; Chess

& West; Addison-Wesley 2007.

• The Security Development Lifecycle; Chapter

21 “SDL-Required Tools and Compiler Options”;

Howard & Lipner; Microsoft Press.

• SecurityInnovation; Hacker Report: Static

Analysis Tools, November 2004 Edition; http://

www.securityinnovation.com/pdf/si-report-

static-analysis.pdf

• Cigital Justice League Blog; Badness-ometers

are good. Do you own one?; McGraw; http://

www.cigital.com/justiceleague/2007/03/19/

badness-ometers-are-good-do-you-own-one/

Presentations:

• Using Static Analysis for Software Defect

Detection; William Pugh; July 6, 2006;

http://video.google.com/videoplay?do

cid=-8150751070230264609

Tools / Tutorials:

• MSDN Library; Analyzing C/C++ Code Quality

by Using Code Analysis; http://msdn.microsoft.

com/en-us/library/ms182025.aspx

• MSDN Library; FxCop; http://msdn.microsoft.

com/en-us/library/bb429476(VS.80).aspx

http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://www.securityinnovation.com/pdf/si-report-static-analysis.pdf
http://www.securityinnovation.com/pdf/si-report-static-analysis.pdf
http://www.securityinnovation.com/pdf/si-report-static-analysis.pdf
http://www.cigital.com/justiceleague/2007/03/19/badness-ometers-are-good-do-you-own-one/
http://www.cigital.com/justiceleague/2007/03/19/badness-ometers-are-good-do-you-own-one/
http://www.cigital.com/justiceleague/2007/03/19/badness-ometers-are-good-do-you-own-one/
http://video.google.com/videoplay?docid=-8150751070230264609
http://video.google.com/videoplay?docid=-8150751070230264609
http://msdn.microsoft.com/en-us/library/ms182025.aspx
http://msdn.microsoft.com/en-us/library/ms182025.aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx

50

Summary of Practices

Section Practice Page number

Secure Design Principles Threat Modeling 2

Use Least Privilege 7

Implement Sandboxing 10

Secure Coding Practices Minimize Use of Unsafe String and Buffer Functions 12

Validate Input and Output to Mitigate Common

Vulnerabilities

15

Use Robust Integer Operations for Dynamic Memory

Allocations and Array Offsets

19

Use Anti-Cross Site Scripting (XSS) Libraries 22

Use Canonical Data Formats 27

Avoid String Concatenation for Dynamic SQL Statements 29

Eliminate Weak Cryptography 32

Use Logging and Tracing 37

Testing Recommendations Determine Attack Surface 39

Use Appropriate Testing Tools 39

Perform Fuzz / Robustness Testing 40

Perform Penetration Testing 41

Technology Recommendations Use a Current Compiler Toolset 44

Use Static Analysis Tools 47

51

Moving Industry Forward

One of the more striking aspects of SAFECode’s

work in putting this paper together was an oppor-

tunity to review the evolution of software security

practices and resources in the two and a half years

since the first edition was published. Though

much of the advancement is a result of innovation

happening internally within individual software

companies, SAFECode believes that an increase in

industry collaboration has amplified these efforts

and contributed positively to advancing the state-

of-the-art across the industry.

To continue this positive trend, SAFECode encour-

ages other software providers to not only consider,

tailor and adopt the practices outlined in this

paper, but to also continue to contribute to a broad

industry dialogue on advancing secure software

development. For its part, SAFECode will continue

to review and update the practices in this paper

based on the experiences of our members and

the feedback from the industry and other experts.

To this end, we encourage your comments and

contributions, especially to the newly added work

on verification methods. To contribute, please visit

www.safecode.org.

Acknowledgements

Brad Arkin, Adobe Systems Incorporated

Eric Baize, EMC Corporation

Gunter Bitz, SAP AG

Danny Dhillon, EMC Corporation

Robert Dix, Juniper Networks

Steve Lipner, Microsoft Corp.

Gary Phillips, Symantec Corp.

Alexandr Seleznyov, Nokia

Janne Uusilehto, Nokia

http://www.safecode.org/

About SAFECode

The Software Assurance Forum for Excellence in Code

(SAFECode) is a non-profit organization exclusively dedicated

to increasing trust in information and communications

technology products and services through the advance-

ment of effective software assurance methods. SAFECode

is a global, industry-led effort to identify and promote best

practices for developing and delivering more secure and

reliable software, hardware and services. Its members include

Adobe Systems Incorporated, EMC Corporation, Juniper

Networks, Inc., Microsoft Corp., Nokia, SAP AG and Symantec

Corp. For more information, please visit www.safecode.org.

Product and service names mentioned herein are the trademarks

of their respective owners.

SAFECode

2101 Wilson Boulevard

Suite 1000

Arlington, VA 22201

(p) 703.812.9199

(f) 703.812.9350

(email) stacy@safecode.org

www.safecode.org

©2011 Software Assurance Forum for Excellence in Code (SAFECode)

http://www.safecode.org/
mailto:stacy@safecode.org
http://www.safecode.org/

