
Software Integrity Controls

An Assurance-Based Approach to
Minimizing Risks in the Software Supply Chain

June 14, 2010

Editor
Stacy Simpson, SAFECode

Contributors
Diego Baldini, Nokia
Gunter Bitz, SAP AG
David Dillard, Symantec Corporation
Chris Fagan, Microsoft Corporation
Brad Minnis, Juniper Networks, Inc.
Dan Reddy, EMC Corporation

ii

	 Table of Contents
	 Introduction	 1

	 The Risks to Software Integrity in a Supply Chain	 2

	 The IT System Supply Chain	 3

	 Software Integrity Controls	 4

	 Vendor Sourcing Integrity Controls	 5

	 Vendor Software Development Integrity Controls	 10

	 Vendor Software Delivery Integrity Controls	 16

	 Future Directions	 21

	 Conclusion	 23

	 Acknowledgments	 23

1

Introduction
Software assurance is most commonly dis-

cussed in the context of preventing software

vulnerabilities that arise from unintended

coding errors and other quality issues ranging

from incomplete requirements to poor imple-

mentation. The reduction of vulnerabilities

in code is achieved through the application

of secure development practices to the

software development lifecycle, sometimes

referred to as software security engineering.

However, as a more distributed approach

to commercial software development has

evolved, questions have been raised about

what additional product security and com-

mercial risks are introduced in the global

software supply chain. One emerging area

of concern is software integrity, an example

of which is the risk that malicious code could

be either intentionally inserted by a threat

agent or unintentionally inserted due to poor

process controls into a software product as

it moves through the global supply chain.

Analyzing this risk in the context of software

engineering requires an understanding not

only of software security engineering, but also

the other essential pillars of software assur-

ance—software integrity and authenticity.

SAFECode defines software assurance as “con-

fidence that software, hardware and services

are free from intentional and unintentional

vulnerabilities and that the software func-

tions as intended.” Achieving this confidence

requires software vendors1 to apply practices

and controls to meet three key goals:

Security: Security threats to the soft-

ware are anticipated and addressed during

the software’s design, development and

testing. This requires a focus on security-

relevant code quality aspects (e.g., “free

from buffer overflows”) and functional

requirements (e.g., “passport numbers

must be encrypted in the database”).

Integrity: Security threats to the software

are addressed in the processes used to source

software components, create software com-

ponents and deliver software to customers.

These processes contain controls to enhance

confidence that the software was not modi-

fied without the consent of the supplier.

1.	 This paper uses both the terms “supplier” and “vendor” to mean an
entity that produces software. These terms may be used interchangeably
in the real world, and the “vendor” practices listed in this document apply
to all software “suppliers.” However, in order to be able to describe the
relationship between software suppliers without confusion, we are using
the term “vendor” throughout the document to identify a specific entity in
a supply chain. Thus, in this context, “supplier” refers to an entity that
provides software components to the “vendor.”

Integrity

ASSURANCE

Security

Authenticity

Three Pillars of Software Assurance

2

Authenticity: The software is not

counterfeit and the software supplier

provides customers ways to differenti-

ate genuine from counterfeit software.

This paper is focused on examining the soft-

ware integrity element of software assurance

and provides insight into the controls that

SAFECode members have identified as effec-

tive for minimizing the risk that intentional

and unintentional vulnerabilities could be

inserted into the software supply chain.

The Risks to Software Integrity
in a Supply Chain
The risk of an attacker using the supply

chain as an attack vector deserves some

further examination. Evidence suggests

that attackers focus their efforts on social

engineering or finding and exploiting exist-

ing vulnerabilities in the code, which are

usually the result of unintentional coding

errors. Thus, experts have concluded that

To help others in the industry

initiate or improve their

own secure development

programs, SAFECode

has published “Fun-

damental Practices

for Secure Software

Development: A

Guide to the Most

Effective Secure

Development Practices

in Use Today.” Based on an analysis

of the individual software assurance

efforts of SAFECode members, the paper

outlines a core set of secure develop-

ment practices that can be applied

across diverse development environ-

ments to improve software security.

The brief and highly actionable paper

describes each identified security

practice across the software develop-

ment lifecycle—Requirements, Design,

Programming, Testing, Code Handling

and Documentation—and offers imple-

mentation advice based on the real-world

experiences of SAFECode members.

These practices are designed to be used

in conjunction with the software integ-

rity practices outlined in this paper.

To obtain a free copy of the paper,

visit www.safecode.org.

This paper has been developed

in conjunction with SAFECode’s

previously published “Soft-

ware Supply Chain Integrity

Framework,” which outlines

a taxonomy for the software

supply chain and a framework

for analyzing and establishing

software integrity controls.

Integrity

ASSURANCE

Security

Authenticity

The Software Supply Chain Integrity Framework

Defining Risks and Responsibilities for
Securing Software in the Global Supply Chain

July 21, 2009

Editor
Stacy Simpson, SAFECode

Contributors
Dan Reddy, EMC
Brad Minnis, Juniper Networks
Chris Fagan, Microsoft Corp.
Cheri McGuire, Microsoft Corp.
Paul Nicholas, Microsoft Corp.
Diego Baldini, Nokia
Janne Uusilehto, Nokia
Gunter Bitz, SAP
Yuecel Karabulut, SAP
Gary Phillips, Symantec

http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf
http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf
http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf
http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf

3

a supply chain attack is not the most likely

attack vector. Notably, the experiences of

leading reputable software companies who

work with their suppliers support this finding.

Further, there is growing recognition that

1) there is no one way to defend against

every potential vector a motivated attacker

may seek to exploit; 2) focusing on the

place where software is developed is less

useful for improving security than focus-

ing on the process by which software is

developed and tested; and 3) there are

circumstances when the insertion of malicious

code would be almost impossible to detect.

These challenges highlight that a risk from

the supply chain could indeed undermine

a product’s intended function or damage

customer trust. Accordingly, major software

suppliers take preventative action against any

unauthorized changes in the form of software

integrity controls. These controls preserve the

quality of securely developed code, prevent

the inadvertent introduction of vulnerabilities

and help to prevent the intentional insertion

of malicious code. Vendors leverage these

integrity controls to achieve these objectives

by addressing the security of the processes

used to source, develop and deliver software.

The IT System Supply Chain
The IT system supply chain is a glob-

ally distributed and dynamic collection of

people, processes and technology. Software

is one component of a larger IT solution

and each software vendor is only one part

of a complex chain of suppliers, systems

integrators and ultimate end users. As such,

each vendor is only one link of a larger,

more complex IT system supply chain.

As a vendor’s customer may not be the

ultimate end user in the IT system supply

chain, it is important to analyze where along

the supply chain software security, integ-

rity and authenticity practices and controls

can be applied effectively and efficiently.

Each supplier along the IT system supply chain

has both an opportunity and a responsibility

to apply software assurance practices and

controls in order to preserve software integrity,

Integrity

ASSURANCE

Security

Authenticity Integrity

ASSURANCE

Security

Authenticity Integrity

ASSURANCE

Security

Authenticity Integrity

ASSURANCE

Security

Authenticity

	 Tier n Supplier	 Tier 2 Supplier	 Tier 1 Supplier	 Integrator

Software Assurance Is a Shared Responsibility In the IT System Supply Chain

Customer

4

security and authenticity within the portion of

the software supply chain it controls. Naturally,

a vendor has the most direct control over its

own internal practices. A vendor’s reach into

its own suppliers for their software assurance

practices and controls may not be as direct.

Within their respective links of the IT systems

supply chain, all software vendors control and

manage three key lifecycle processes where

they can effectively and efficiently implement

software assurance practices and controls:

1.	 Software Sourcing: Vendors select their

component and services suppliers, estab-

lish the specifications for a supplier’s

deliverables and have activities to “on-

board” software and hardware components

and services received from suppliers.

2.	 Software Development: Vendors

build, test, assemble, integrate and

package components for delivery.

3.	 Software Delivery: Vendors deliver

the software product to customers

and provide ongoing sustainment.

It is within these three processes that effective

software security, integrity and authentic-

ity practices and controls must be applied in

order to improve the assurance of delivered

software. This paper will focus specifically

on the software integrity controls that ven-

dors apply to each of these processes.

It should be noted that SAFECode member

companies, like industry companies at large,

are still sharing information and examining

practical and meaningful means of measur-

ing and verifying software assurance in the

marketplace. As that work matures, we can

expect more consistency in how informa-

tion about internal processes is asserted

and evaluated between trading partners.

Thus, while this paper focuses on the prac-

tices and controls involved along the supply

chain, it was developed with the recognition

that more work in this area needs to be

done, and it does not attempt to be highly

prescriptive with respect to measurement.

Software Integrity Controls
The following sections will detail the soft-

ware integrity controls that SAFECode has

identified as effective for minimizing the

risk that vulnerabilities could be intention-

ally or unintentionally inserted into the

software supply chain. This analysis is based

on the real-world experiences of SAFECode

members. These integrity controls aim to

preserve the base level of security in a

product achieved through each supplier’s

Software
Sourcing
• Procurement

Software Development
and Testing
• Environment
• Personnel
• Software Development

Software
Delivery
• Distribution
• Sustainment

5

secure development practices by helping to

prevent the introduction of vulnerabilities as

a product moves along the supply chain.

The controls identified in the following

sections are based on the seven basic

principles for software integrity outlined

in SAFECode’s previously published “Soft-

ware Supply Chain Integrity Framework:”

•	 Chain of Custody

•	 Least Privilege Access

•	 Separation of Duties

•	 Tamper Resistance and Evidence

•	 Persistent Protection

•	 Compliance Management

•	 Code Testing and Verification

These principles support the development

of the software integrity controls outlined

in this paper and identified by SAFECode

as practical, repeatable and auditable.

The software integrity controls described in

the following sections do not represent a

minimum control list, but rather are designed

to be integrated with other security practices

and tailored to meet a product’s specific risk

profile. Furthermore, they are to be integrated

into the vendor’s software engineering process

and performed in conjunction with corporate

security functions. These may include physical

security, network security, IT infrastructure

security and business continuity management.

SAFECode has organized the integrity

controls listed in the following sections

by the three key lifecycle processes each

software vendor has control over—sup-

plier sourcing, product development, and

product delivery and sustainment.

Vendor Sourcing Integrity Controls

Software
Sourcing
• Procurement

Software Development
and Testing
• Environment
• Personnel
• Software Development

Software
Delivery
• Distribution
• Sustainment

During the sourcing process vendors

establish component specifications, select

suppliers of components and services

and receive supplied components.

The selection and application of software

integrity controls for use during sourcing is

a risk-based decision and largely influenced

by the nature of the relationship between a

vendor and its software component supplier.

There are three types of vendor-supplier rela-

tionships: First, “arms length” relationships

where vendor A licenses a component from

supplier B. Second, work-for-hire relationships

where vendor A engages supplier B to provide

a software component. Third, work-for-hire

relationships where vendor A engages supplier

B to provide a staff augmentation service.

6

Relationships between a vendor and a sup-

plier based on licensing finished components

like databases, enterprise resource manage-

ment systems, or operating systems are

examples of arms length relationships. It

is incumbent on suppliers that license their

software—typically suppliers of commercial-

off-the-shelf (COTS) products or Open

Source Software (OSS) components— 1) to

assure that security threats to the product

or component are anticipated and addressed

during its design, development and test-

ing; 2) to assure that the processes used

to source and create components, and to

deliver the product to their customers are

secure; and 3) their suppliers provide ways

for their customers to differentiate genuine

products and components from counterfeit.

In relationships based on work-for-hire, the

software delivered by a supplier to a vendor

is owned by the vendor. The integrity controls

used by the supplier may be the supplier’s,

the vendor’s or any combination thereof.

Typically, in staff augmentation engagements

the vendor’s and supplier’s staff work collab-

oratively on projects that share code libraries,

tools and resources, and all project members

utilize the same software integrity controls.

In each of the above relationships, the ven-

dor has different degrees of control over

the integrity practices and controls used

by its supplier. It is this level of control

that guides the selection of the software

integrity practices and controls neces-

sary to minimize software integrity risks.

The next section describes integrity 	

controls that can be used in a vendor’s 	

sourcing process.

Vendor Contractual Integrity Controls
A vendor’s engagement with a supplier

should be governed by a written agree-

ment, for example a license or a contract.

The written agreement must explicitly state

the vendor’s and supplier’s expectations,

as well as the consequences of any non-

compliance with the terms of the agreement.

Defined Expectations

•	 Clear language regarding the requirements

to be met by the code and the develop-

ment environment should be set forth

during the contracting process. Among

other things, this should include commit-

ments to provide security testing, code

fixes and warranties about the software

development and delivery process used.

Overall this helps to set the expectation

of delivering a product with integrity.

Ownership and Responsibilities

•	 Intellectual property ownership and

responsibilities for protecting the

code and development environment

should be clearly articulated.

Vulnerability Response

•	 In today’s world, vendors must push for

a more formal understanding of how well

their suppliers are equipped with the capa-

bility to collect input on vulnerabilities from

7

researchers, customers or sources and

turn around a meaningful impact analysis

and appropriate remedies in the short

timeframes involved. The fact is that the

handling of such vulnerabilities will likely

become a joint responsibility in the face of

downstream visibility to customers. No one

can afford to be surprised about a suppli-

er’s potential immaturity in handling these

challenges in the middle of a situation.

Suppliers provide common terminology

for these discussions by using now-default

references to well-known specifications

like Common Vulnerabilities and Exposures

(CVE) and Common Vulnerability Scoring

System (the CVSS). Each party should

identify contact personnel and review tim-

ing and escalation paths as appropriate to

be prepared to provide a prompt response.

Security Training

•	 Another important area for discussion

between trading partners is assessing a

supplier’s capability to effectively train

its developers on secure development

practices. While it is not necessary to

be highly prescriptive about a particu-

lar curriculum or certification regime, a

company cannot credibly assert that it

has a secure development framework or

that it follows integrity practices if there

is no evidence of any relevant training.

The contracts between companies regard-

ing software have typically been focused

on expectations regarding functional

performance, defect handling, licensing

issues and other challenges like end-of-

life support. As concerns about protecting

software’s integrity have escalated along

with reducing the risk of counterfeit com-

ponents and products, contracts evolved

further to address this in language.

New language that specifically addresses

the issue of integrity and authentic-

ity of COTS product components from

external suppliers that will be included

in the ultimate product can also be

explored. The language would ask sup-

pliers to self-certify that the supplier’s

software aligns with security standards

and that the supplier’s practices align

with best practices of industry code

security and integrity organizations

like SAFECode or its equivalent.

8

Open Source Software

The use of open source software pres-

ents alternative challenges in the

context of supply chain integrity.

While in some cases a commercial entity may

package and support open source software,

other open source software is managed by a

community with which a direct relationship

cannot be established. In the latter case, the

trust and accountability between a vendor

and the community supplying software is

different. Notably, the contractual terms

that vendors establish with commercial sup-

pliers do not apply to community-supplied

components as there is no direct supplier

with whom to establish an agreement. Exist-

ing license terms governing the use of open

source software are focused on ensuring

that combinations of the software with other

software are consistent with the community’s

expectations. Those license terms may not

provide sufficient support for efforts to protect

software integrity. Other controls similar to

those present in commercial vendor-supplier

agreements may need to be implemented for

community-supplied software. For instance,

as vulnerabilities are visible to anyone and

because their exploitability can be readily

assessed, open source communities may call

for more active vulnerability management

and incident handling, and users in the field

may request quicker software updates.

As a result, the process used to evaluate

and select open source software components

deserves consideration. Software ven-

dors analyze the reputation and release

engineering practices of the community

supporting an open source component to

help assess its competence and reliability

in dealing with security matters. While

the vetting practices will vary depend-

ing on the specific product needs and risk

profile, means to validate open source pack-

ages and their distribution sites need to

be adopted and developed, respectively.

A viable integrity control for community

open source components is for a vendor to

get the source, review it and build it. Vali-

dating the quality of open source software

needs to happen after acquisition of the

code. Vendors may choose to include an

open source component or leave it up to the

acquirer to obtain and evaluate the compo-

nent. For vendor-supported OSS, an acquirer

can transfer risk to the vendor through

appropriate language in their agreement.

Otherwise in either case, procedures must be

implemented for the inspection of software

components for the presence of vulnerabilities

and for the assessment of the trustworthi-

ness of the component’s distribution site.

In general, a vendor must under-

stand how each of its suppliers

handles the open source components

that are shipped with its own code.

9

Vendor Technical Integrity
Controls for Suppliers

Secure Transfer

•	 Delivered code should be transferred

securely, using authenticated endpoints

and encrypted sessions. Content being

delivered should be encrypted for transit.

This requires that suppliers use the best

available technology, mechanisms and

procedures when exchanging deliverables.

A secure end-to-end automated process

can often strengthen the protection that

could be resident in a manual procedure.

Sharing of System and Network Resources

•	 The digital identities a vendor issues to

suppliers to enable access to the ven-

dor’s network and resources should be

established with strong controls enforced

to limit access to only those resources

needed to perform the supplier’s role.

–– Each resource that is shared should

have its own independent assess-

ment as to what authentication and

authorization is required. For example,

staff access to a vendor’s development

project requires additional authoriza-

tion over and above the authorization

a staff member receives in order to

access a vendor’s corporate network.

–– A supplier’s access to development

assets should expire as soon as it leaves

the project. A fail-safe check should

also be in place to end all privileges

automatically at contract expiration

or at another fixed period. A robust

procedure is required so that when a

supplier’s employee leaves the sup-

plier company, the former employee’s

credentials immediately expire. A

combination of automatic disabling and

manual notification is best to ensure

completeness of privilege removal.

Malware Scanning

•	 Supplier content to be transmitted to

the vendor should be scanned for mal-

ware using the most recent malware

signature files and more than one com-

mercial scanning engine. While today’s

malware scanning tools are generally not

designed to identify malicious code that is

perfectly formed, this standard integrity

control should be performed at points of

exchange between parties. Depending

on the relationship and the practicality of

doing so, suppliers should inform recipi-

ents of the code as to what scanning has

taken place up to the point of transfer.

Secure Storage

•	 Source code for software components

and products should be stored securely

with need-to-know access controls

applied. Code packages that are trans-

ferred should be moved to a secure

asset repository as soon as practical so

that they can be managed more pre-

cisely with respect to access privileges.

10

Code Exchange

•	 Processes using digitally signed pack-

ages and verifiable checksums or hashes

should be in place to ensure that received

code is complete and authentic. Verifying

the digital signatures with validated time

stamps of the software packages proves

authenticity and establishes that the

download or transfer process delivered an

intact version of the intended package.

Vendor Software Development
Integrity Controls

In software development and test-

ing, software vendors build, assemble,

integrate and test software components

to finalize them for delivery.

Software vendors have a great deal of

experience implementing powerful man-

agement, policy and technical controls to

achieve sound engineering practices and

intellectual property protection. The secure

development practices that focus primar-

ily on achieving the “security” circle in the

software assurance triad described above

become the baseline for internal development.

Within a software vendor’s organiza-

tion, additional software integrity controls

may exist within the context of other IT

functions such as backup and recovery,

business continuity, physical and network

security, and configuration management

systems. The following are examples of

controls employed by SAFECode members:

People Security

•	 It should be noted that while criminal

background checks are often the focus

of public debate, in practice SAFECode

members have found that they are not as

effective as other controls and processes.

Focusing on organizational and process

controls in conjunction with technology

to minimize risks coming from within the

company is more efficient and effective.

For that reason, many of the following

controls to minimize the risk from mali-

cious insiders are based on practices

such as the segregation of duties and the

use of controlled automated processes.

•	 It is important that roles, responsibili-

ties and access rights are clearly defined

in development processes to achieve a

defense-in-depth approach. Development

management must be knowledgeable as

to who has what access. A team of people

with well-planned responsibilities must

maintain appropriate operations for guard-

ing code assets while meeting the demands

of the global engineering environment.

Software
Sourcing
• Procurement

Software Development
and Testing
• Environment
• Personnel
• Software Development

Software
Delivery
• Distribution
• Sustainment

11

•	 In addition to the expected training in

secure development practices, there

should be training in the secure techni-

cal controls used by other integrity

practices. Does each organization know

how to verify a digital signature with

a validated timestamp? Does each

organization understand which hash algo-

rithms are best used in a checksum?

Physical Security

•	 Building security and physical access

control should be applied to develop-

ment locations and code repositories and

periodically re-assessed using a risk-based

process. Physical security controls should

be strong enough to ensure that devel-

opment assets cannot be accessed by

outsiders. Physical protection of source

code should go beyond a single layer of

building security and include additional

distinct physical access controls that limit

access to those with a “need to know.”

For example, additional badge restricted

access beyond the normal building access

should be required for administrators

to access code assets protected in a

repository. Physical assets and credentials

While SAFECode’s Development Practices

paper describes how to identify and avoid

typical coding errors such as buffer over-

flows, SQL injection, cross site scripting

and more, this current work deals with the

question of preserving the integrity of an

IT product. The integrity practices serve

as controls to prevent unauthorized or

inadvertent changes to the source code.

Without proper controls, vulnerabilities

can be introduced by ”good faith” develop-

ers. For example, while fixing a problem in

their part of the code with dependencies

elsewhere, a developer might inadvertently

change code while merging it with a related

function (e.g., an interface) primarily owned

by another. Without proper integrity controls,

this change might go undetected and could

cause problems elsewhere because nobody

was expecting the function to have changed.

A combination of good access controls,

testing and peer review of changes could

minimize this risk. Thus integrity controls

can aim at preserving the well-constructed

code for the approved specification while

preventing careless or inadvertent changes.

Integrity controls throughout the supply

chain will also reduce the risk of a malicious

attacker being able to change code inten-

tionally or perhaps detect a virus before it

spreads into the production environment.

Integrity Controls vs. Development Practices

12

(e.g., keys, badges, security tokens,

smartcards, laptops, etc.) loaned to an

individual should be retrieved and veri-

fied against a list of expected assets as

part of a managed termination process.

Network Security

•	 Network security standards should be

established and applied using a risk-based

process for the code-related assets. For

example, security protections could include

intrusion detection or other defensive

measures on source code repositories

with alerting to appropriate event sys-

tems that would alarm during an attack.

Session traffic involving source code

should be encrypted to acceptable com-

pany or applicable industry standards.

•	 Access to developer workstations should

be controlled. For example, workstations

can be tied to corporate authentication to

ensure that terminated workers are imme-

diately denied further access. Accounts

of departing employees and other autho-

rized workers should be properly disabled

immediately to allow appropriate review of

their work. It is important to disable, and

not delete, accounts so that a full forensic

analysis is still possible after termination.

•	 Workstation and virtual machine security

should be secured to standards to mini-

mize the opportunity for malicious code to

be introduced during the coding process.

Developers should have write access to

the minimum code necessary to carry

out their responsibility. Access to code

stored on local machines should also be

controlled based on a “need-to-know” and

“least-privilege” basis to the extent possible

given the goals of the project at hand.

Code Repository Security

•	 All code-related assets should be

housed in source code repositories

(also known as configuration manage-

ment systems or source code control

systems), to enable additional atten-

tion to security and access control.

•	 The servers that host the source code

repositories should be housed securely.

In most major software vendors, these

machines are located in data centers with

appropriate physical security, hardened

server security and business disaster

recovery controls. Be mindful that source

code is sometimes copied and kept in

separate databases after being run through

some static code analysis tools. The confi-

dentiality of code files should be protected

in all locations. This avoids unauthorized

people from seeing the code structure

and test results. Combined access to such

information might enable them to better

target particular code files in a later attack.

•	 The “out of the box” defaults of any such

system must be examined and configured

to be secure by default, ideally accord-

ing to a well-understood standard for a

13

system holding an acquirer’s precious

assets such as its customers’ personal

identifiable information. One objective

would be for the system to operate without

the risk of allowing exploits through eas-

ily inherited system-level root privileges.

Many detailed settings such as authen-

tication handling, session variables and

external interfaces must be addressed to

deliver secure-by-default deployment. A

software’s default state should promote

security. For example, software should

run with the least necessary privileges

and services that are not widely needed

should be disabled by default or only

accessible to a small population of users.

•	 Once enabled as secure by default, that

configuration status itself must be pro-

tected. As more systems like repositories

become compliant with specifications like

the emerging Security Content Automa-

tion Protocol (SCAP) specifications, the

configuration state of the repository and

subsequent changes can be expressed

and consumed in machine-readable

form, offering greater initial and ongo-

ing protection supported by automation.

•	 Ideally, access to source code repositories

should be controlled through the use of

corporate identity systems, with strict

control maintained over access to any

system account. Engineering administra-

tors responsible for managing application

repositories should be named users with

distinct identities to provide accountability.

Administrative practices should observe

the separation of duties principle, and

elevated permissions should be subject

to management approval. For instance,

project engineering administrators require

a higher level of access to code assets

to perform their duties than network

security administrators. Other person-

nel such as IT or Security Operations

may have responsibility for base-level

configurations and the overall platform

profile including security patch levels, etc.

•	 Within the repositories, access to

branches, work areas or code sets

must be understood by development

management, and access privileges

should be granted using the principles

of least privilege and need to know.

•	 Code segments can be tied to spe-

cific requirements in a requirements

management, enhancement or bug

tracking system that allows for cross

mapping of functionality to code.

•	 Change management practices with review

and approval paths should be formalized

and well understood for code logic and

asset changes, repository application and

underlying system configuration changes.

•	 Change logs for all modifications to a

product’s code assets should be main-

tained and preserved for future analysis.

Logs should provide file names, account

name of the person checking in the file,

14

A company can have source code policy

and standards that product engineer-

ing teams are expected to meet in the

context of protecting source code and

product artifacts throughout the product

development cycle. For example, these

could include detailed corporate expecta-

tions regarding the protection of source

code repositories and build environments.

Some might be simple requirements, like

“Source Code Systems should leverage

corporate identity stores for authentication,”

and perhaps obviously that “no anonymous

access can be allowed to a repository.”

Others are more detailed, such as which

particular systems for handling internal

request and approval routing for source

code repository privileges must be used

by each engineering team. Setting up the

linkage between source code repositories

and the set of build tools is challenging

since automation and accountability must

be blended. A practical approach is needed

such that the sets of tools can be consistent

and automated, while still making it known

who created and ran the scripted environ-

ment that produced a particular build. In

addition, build scripts need protection as

critical assets. This internal standard also

ties into corporate security polices and con-

trols such as the credentialing requirements

for personnel and handling of digital identi-

ties, a key bridge to best practices around

the protection of source code repositories.

An active, ongoing relationship with engi-

neering teams places the internal security

team in the best position to effect ongoing

improvements to the protection of code

throughout its lifecycle. The requirements

should not distract by simply attempt-

ing to force everyone to use an identical

repository, but to set the standard for how

a repository should be set up and operated

securely. The approach taken in working

with engineering teams is to assess the

gaps that exist between where a group is

today on each item in the standard and to

build an improvement plan for closing the

gaps as part of a risk-based approach.

15

check-in time stamp, and the line changes

made. They should be kept for a suf-

ficient time in a protected environment

to assist with any forensics or ongo-

ing security improvement initiatives.

•	 A manifest of all code assets contributing

to a product, including those developed

in-house and by third parties, should be

maintained and managed, similar to a Bill

of Materials in the manufacturing domain.

•	 Versions of software assets with their

known security characteristics should

be tracked in the repository. Change or

configuration management should be

tracked as well to find the balance between

getting the latest patches and updates

and having stable, predictable code.

Build Environment Security

•	 Build environments should be as automated

as possible. This minimizes the opportunity

for human intervention in the regular build

process. However, the “owners” of the build

environment should be few. The traceability

of actions on build scripts and of access

to code files during build should be high.

•	 Build automation scripts should be treated

in a manner similar to other source

code assets and checked in to the code

repository. This means that changes to

the automated build process can be attrib-

uted to the person checking in the file.

•	 Service accounts that run in an automated

fashion between source code repositories

and build tools should be traceable to

individuals with the authority to execute

the automated scripts or procedures.

Peer Reviews and Security Testing
One security engineering practice that all

SAFECode members use in conjunction with

their software integrity controls is security

testing. Source code and binary analysis

tools, and sometimes manual code review,

are performed on code to identify common

coding patterns that are known to have

been attacked previously. Testing tech-

niques are continually upgraded. Security

engineering practices complement software

integrity controls because security engi-

neering practices represent an ever-rising

threshold against software supply chain

vulnerabilities. The testing techniques below

are primarily software security engineering

practices, not software integrity controls.

Peer Review

•	 Peer reviews and the manual inspection

of code are not often popular given issues

of scalability. Automated tools can enable

some scalability by collecting and process-

ing more artifacts in preparation for peers

performing a focused review. Also, when

teams are assigned to work together on

code files, an important dynamic is present

whereby reviewers can more readily iden-

tify code that does not belong within a code

set. Focusing peer reviewers on changed

code that is scanned again and awaiting

16

approval during a two-stage check-in to

the repository can be an effective approach.

Another approach is to couple peer reviews

in relation to exercised code paths in the

context of overall code coverage. In gen-

eral, questions about the structure and

purpose of sections of code that arise dur-

ing peer review are more likely to uncover

intentional malicious code or inadvertent

code errors than automated testing alone.

Testing for Secure Code

•	 The size of the code base for many soft-

ware projects today requires automated

code review and testing tools. Additional

information on secure code testing can

be found in SAFECode’s “Fundamental

Practices for Secure Software Develop-

ment” paper. Building these tests to

run in a repeatable automated manner

increases the assurance that they will

be performed and analyzed often.

•	 The list below identifies the most com-

mon categories of testing tools used:

–– Static code analysis tools (source code)

–– Network and web application vulner-

ability scanners (dynamic testing)

–– Binary code analysis tools

–– Malware detection tools (dis-

cover backdoors, etc.)

–– Security compliance validation tools

(hardening, data protection)

–– Code coverage tools

While security testing is a fundamental part

of supply chain security, software vendors

recognize that testing alone is not likely to

catch malicious code that is intentionally

inserted, perfectly crafted and disguised to

appear as legitimate. Due to these limitations,

software testing must be augmented with

the other listed software integrity practices

that control access to development assets to

more effectively address potential software

security risks in this stage of the supply chain.

Vendor Software Delivery
Integrity Controls

This stage of the software supply chain

covers new product delivery and the

delivery of maintenance patches.

It is important to note that while this may

be the last stage of the supply chain directly

under a software vendor’s control, it is not

always the final step in the supply chain from

the end user’s point of view, as software

vendors often do not provide their products

directly to end-user organizations. In many

cases, the software vendor’s products are

passed to system integrators, resellers and

authorized service providers before reaching

Software
Sourcing
• Procurement

Software Development
and Testing
• Environment
• Personnel
• Software Development

Software
Delivery
• Distribution
• Sustainment

17

the end-user. Thus, as software components

leave the supplier, software integrity and

authenticity become a shared responsibil-

ity between supplier and customer.

Publishing and Dissemination
The controls for product delivery are

similar to those for the receipt of code

components from software suppliers to the

software vendor as described in the Sourc-

ing section of this paper. However, additional

security needs arise once the software

product is complete. These include state-

of-the-art anti-malware checks and the

availability of a mechanism that provides

a way for customers to assure themselves

of the integrity of the delivered package.

Malware Scanning

•	 Products should be scanned for malware

using the most recent malware signature

files and more than one commercial scan-

ning engine. As mentioned earlier and

depending on the nature of the relationship,

it may be appropriate to communicate what

scanning was done prior to the handover.

Code Signing

•	 The software vendor’s product should be

strongly digitally marked with the software

vendor’s identity in a way that can’t be

altered, yet may be verified by customers.

Delivery

•	 A vendor’s process for delivering

products both online and through dis-

tributions using physical and electronic

media should be secured. Informa-

tion on code signing and checksums

should be available to customers.

Transfer

•	 Transfer products in such a way that the

receiver can confirm that the product

is coming from the software vendor.

Authenticity Controls
For all the work that software vendors do

in ensuring they produce a quality product

free from vulnerabilities, there remains

residual supply chain risk after the product

has been released. Millions of customers

every year unsuspectingly acquire coun-

terfeit software. According to the Business

Software Alliance, over one in five software

packages are counterfeit or pirated.2

While not a central focus of this

paper, authenticity or anti-

counterfeiting controls are

one of the three essential

elements of software

assurance and thus

are tightly integrated

with software integrity

controls, especially as

2. Business Software Alliance, “Sixth Annual BSA-IDC Global Software
Piracy Study,” May 12, 2009.

Integrity

ASSURANCE

Security

Authenticity

18

software is prepared for delivery. Thus, it

is important to highlight the key authentic-

ity controls used by software vendors in the

software delivery link of the supply chain.

Counterfeit products often look authentic,

but they pose serious risks to customers.

Counterfeit software cannot be assured to

function as intended and often contains

malicious code aimed at data destruction or

theft. Protecting customers and businesses

from the risks of counterfeit software requires

both engineering efforts by software vendors

and awareness and recognition by acquir-

ers and end users. The risk of counterfeit

software can be greatly reduced through

purchase from only authorized resellers,

careful examination of product packaging and

media, and technology to notify users when

they may be victims of counterfeit software.

Cryptographic Hashed or Digitally
Signed Components

•	 As mentioned above, digitally signed

components or checksum hashes are an

essential authenticity control to prove

that components are genuine. With any

system there are characteristics of the

software being shipped that are stable,

while there may be other items that vary

with particular configuration options

as installed. Today the “signing” of an

application provides a capability to detect

that an application has not been tam-

pered with since the time it was signed.

Vendors must find the right balance and

offer proof of authenticity for the many

predictable aspects of the software.

Notification Technology

•	 With a variety of distribution channels

for software, including online distribution,

customers often can’t tell that they have

a counterfeit product until it is installed

on their computer. Vendors can leverage

technology to detect certain aspects of

the product’s integrity and notify the user

if the software is deemed to be counter-

feit. Sometimes introduced by vendors to

prevent license piracy, this technology has

evolved into an effective integrity control.

Authentic Verification during
Program Execution

•	 In practice, the integrity of an applica-

tion can be verified when the application

is installed on a computer. Additionally,

each time an application runs on a user’s

computer, similar technology can verify

the integrity of the files that make up the

application. The hardware and software

technology used to verify the claims

applications and files make about their

validity and integrity is well understood,

efficient and broadly available. Software

vendors who already make use of this

technology have invested in hardware,

software, people and process, effec-

tively “code signing” their applications.

19

•	 A vendor with the right technology

tools can effectively pre-authorize the

program execution of only a specific

set of applications from a “good” list,

effectively blocking any newly spawned

code that may not be legitimate.

Product Deployment and
Sustainment in the Ecosystem
The software lifecycle extends beyond delivery

of the initial software vendor’s product and

into the product’s sustainment or mainte-

nance phase. As a result, patches and hot

fixes should be subject to the same software

integrity controls as the original code.

It is important that authorized service person-

nel with ongoing access to genuine parts and

proper disposal procedures are involved in

the sustainment process. Authorized access

should convey that the person actively works

for the company providing the service and

that service personnel don’t have more

privileges on the installed environment than

those needed to complete the task at hand.

All service transactions should provide evi-

dence that legitimate service personnel did

the work, and evidence should be available

for audit and protected against tampering.

Secure Configurations

•	 Whenever possible, software vendors

should ship products with a secure

configuration being set as the default

configuration. Secure configurations for the

supplied software should be delivered to

the customer along with an outline of the

risk implications of the configuration state

or choices detailed. The future of broader

adoption of machine readable SCAP

compliant configurations will strengthen

this area’s contribution to integrity.

Custom Code Extensions

•	 Software designed to be integrated and

extended to deliver additional functionality

creates another link in the supply chain.

Assume that the original software and its

interfaces were secure, fully functional

and delivered with integrity and authentic-

ity. Software components that are added

later to extend the functions of an IT

System must be also be treated with the

same care as originally applied by the

internal development and testing of its

supplier. Integrators must follow secure

development practices as they extend

code functionality through the provided

secure interfaces. In addition, to continue

integrity, their component assets should

be cataloged in a repository, access to

code restricted based on “need-to-know”

and peer reviews implemented. The

chain of custody must be preserved with

these controls as the sets of products

are assembled for the solution to be

delivered to the ultimate end customer.

Resellers or systems integrators often

manage this link in the supply chain.

20

Table 1: Summary of SAFECode Software Supply Chain Integrity Controls

Processes Controls

Software sourcing

Vendor contractual integrity
controls

•	Defined expectations

•	Ownership and responsibilities

•	Vulnerability response

•	Security training

Vendor technical integrity
controls for suppliers

•	Secure transfer

•	Sharing of system and network resources

•	Malware scanning

•	Secure storage

•	Code exchange

Software 	
development 	
and testing

Technical controls

•	People security

•	Physical security

•	Network security

•	Code repository security

•	Build environment security

Security testing controls
•	Peer review

•	Testing for secure code

Software delivery
and sustainment

Publishing and 	
dissemination controls

•	Malware scanning

•	Code signing

•	Delivery

•	Transfer

Authenticity controls

•	Cryptographic hashed or digitally signed
components

•	Notification technology

•	Authentic verification during program
execution

Product deployment and
sustainment controls

•	Patching

•	Secure configurations

•	Custom code extension

21

Future Directions
As software integrity remains an emerg-

ing discipline, there are a number of

areas that SAFECode believes deserve

further study and industry collaboration.

These include, but are not limited to:

Supplier Management and Communication
along the Supply Chain

•	 The work that the software industry has

undertaken to identify and implement

secure coding practices, including the

findings presented in SAFECode’s “Fun-

damental Practices for Secure Software

Development” paper, takes on new

implications when examined along the

supply chain from one supplier to another.

These security practices together with

normal quality control concerns could

be reexamined in the context of the

exchange of software and related infor-

mation from one supplier to another.

Research on Software Testing

•	 As discussed previously, automated test-

ing currently is limited in its ability to

detect malicious code that is intentionally

inserted and well disguised as legitimate.

Essentially, today automated testing can

only detect malware that use coding

patterns that have been seen previously.

Increasing the capability of software test-

ing of source and binary code to identify

vulnerabilities is an area worthy of future

research and development. Additional

behavioral analysis of a piece of code might

be a promising new approach similar to

what is already implemented in some of

today’s anti-virus detection software.

Authenticity Ease of Use

•	 While cryptography can be applied with

checksums, digital certificates and signa-

tures and validated timestamps, the user

experience to verify legitimate software

can be confusing and daunting. Users need

far easier means of validating authenticity

so that they are not primarily focused on

clearing their screens of any distractions

to get on with the tasks at hand. Since

social engineering attacks sometimes count

on users dismissing warnings or errors,

ongoing work in this area is important.

Authentic Software at Runtime

•	 How can end-users assure themselves that

all software running on their machines is

authentic and trustworthy? One promising

technology advancement is the Trusted

Platform Module (TPM), a hardware compo-

nent that can be integrated with a signed

operating system, signed applications and

signed add-ins to provide an end user the

assurance at run time that all components

are authentic. However, for TPMs to be

truly effective, all software must be signed.

Some vendors, both community (open

source) and proprietary, have taken steps

to enable this technology. However, an

22

industry-wide effort is necessary to achieve

this vision as the computers used by end

users contain an eclectic collection of

software sourced from a vast ecosystem of

vendors, suppliers and communities. The

Trusted Computing Group (www.trusted-

computinggroup.org) is an example of an

organization actively addressing this issue.

More Comprehensive Data on
Today’s Practices and Controls

•	 While SAFECode has offered the best

thinking of its member companies in this

important emerging area, the field could

be furthered by capturing broader data

from a larger segment of information

technology vendors about their cur-

rent or preferred practices so that the

overall community is guided by data as

continuous improvements are made.

Software Integrity and Cloud Computing

•	 The impact of cloud computing on the

“traditional” view of software supply

chain risks, as addressed in this paper,

needs to be assessed. Software pos-

sesses many of the same characteristics

inherent in other forms of intellectual

property. As a result, issues associated

with jurisdiction, access authorization and

compliance need to be assessed for their

impact on software integrity controls.

Broader Collaboration with Supply
Chain Management Community

•	 While the well-established and mature

supply chain management community

is becoming aware of these emerging

threats to the IT system supply chain,

there is room for greater collaboration

around a shared understanding of the

challenges, common terminology and

existing disciplines that can be leveraged

across an even broader community.

Measurement

•	 SAFECode is currently examining its mem-

bers’ practices on measuring software

assurance. As that work evolves, there

are sure to be implications for improv-

ing the exchange of integrity-related

measures among trading suppliers.

23

Conclusion
SAFECode views software integrity as a

fundamental pillar of software assurance.

Protecting the integrity of software requires

a set of controls that should be implemented

alongside secure development and authentic-

ity practices; indeed, integrity preserves and

supports security and authenticity across

the complexity of a supply chain. However,

resources and best practices for identifying

and analyzing software integrity controls are

not yet widely available, creating challenges

for both software vendors and customers.

While a software vendor is only one link in

a complex IT solution supply chain and has

a limited ability to influence the actions of

the other entities along the chain, all soft-

ware vendors have both the opportunity and

responsibility to protect the integrity of the

software as it moves through the link they

control. This requires the application of soft-

ware integrity controls to a vendor’s software

sourcing, development and delivery processes.

SAFECode believes the industry-wide adoption

of software integrity controls has the potential

to greatly improve customer confidence in

IT systems. It has published this collection

of best practices, which are based on the

lessons its members have learned in their

individual implementation of these controls,

in an effort to provide guidance to others

in the industry. SAFECode encourages the

software industry to tailor and adopt these

controls, as well as continue further study and

analysis on additional practices and controls

to improve software supply chain integrity.

Acknowledgments
Brad Arkin, Adobe Systems Incorporated

Eric Baize, EMC Corporation

Matt Coles, EMC Corporation

Robert Dix, Juniper Networks, Inc.

Yuecel Karabulut, SAP AG

Paul Nicholas, Microsoft Corporation

Gary Phillips, Symantec Corporation

Tyson Storch, Microsoft Corporation

Kevin Sullivan, Microsoft Corporation

Janne Uusilehto, Nokia

About SAFECode
The Software Assurance Forum for Excellence

in Code (SAFECode) is a non-profit organization

exclusively dedicated to increasing trust in infor-

mation and communications technology products

and services through the advancement of effective

software assurance methods. SAFECode is a global,

industry-led effort to identify and promote best

practices for developing and delivering more secure

and reliable software, hardware and services. Its

members include Adobe Systems Incorporated,

EMC Corporation, Juniper Networks, Inc., Microsoft

Corp., Nokia, SAP AG and Symantec Corp. For

more information, please visit www.safecode.org.

© 2010 Software Assurance Forum for Excellence in Code (SAFECode)

(p) 703.812.9199

(f) 703.812.9350

(email) stacy@safecode.org

www.safecode.org

SAFECode

2101 Wilson Boulevard

Suite 1000

Arlington, VA 22201

