
Software Assurance:
An Overview of

Current Industry Best Practices

February 2008

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 						

Executive Summary
Software Assurance: An Overview of Current Industry
Best Practices

Software underpins the information infrastructure that govern-
ments, critical infrastructure providers and businesses worldwide
depend upon for daily operations and business processes. These
organizations widely and increasingly use commercial off-the-
shelf software (“COTS”) to automate processes with information
technology. At the same time, cyber attacks are becoming more
stealthy and sophisticated, creating a complex and dynamic risk
environment for IT-based operations that users are working to
better understand and manage. As such, users have become in-
creasingly concerned about the integrity, security and reliability
of commercial software.

To address these concerns and meet customer requirements,
vendors have undertaken significant efforts to reduce vulner-
abilities, improve resistance to attack and protect the integrity
of the products they sell. These efforts are often referred to as
“software assurance.” Software assurance is especially impor-
tant for organizations critical to public safety and economic and
national security. These users require a high level of confidence
that commercial software is as secure as possible, something
only achieved when software is created using best practices for
secure software development.

This white paper provides an overview of how SAFECode mem-
bers approach software assurance, and how the use of best
practices for software development helps to provide stronger
controls and integrity for commercial applications.

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 						

 Table of Contents

 The Challenge of Software Assurance and Security 4

 Industry Best Practices for Software Assurance and Security 7

 Framework for Software Development 9

 Software Security Best Practices 12

 Related Roles of Integrators and End Users 16

 SAFECode’s Goals 18

 Conclusion 18

 Questions for Vendors about Product Assurance and Security 19

 About SAFECode 20

	 4

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							5

The Challenge of Software Assurance
and Security

Software assurance encompasses the development
and implementation of methods and processes

for ensuring that software functions as intend-
ed while mitigating the risks of vulnerabilities,
malicious code or defects that could bring harm

to the end user. Software assurance is vital to
ensuring the security of critical information tech-

nology resources. Information and communications
technology vendors have a responsibility to address as-

surance through every stage of application development.

This paper will focus on the software assur-
ance responsibilities of software vendors.
However, integrators, operators and end
users share some responsibility for en-
suring the security of critical information
systems. Because of the rapidly changing
nature of the threat environment, even
an application with a high level of qual-
ity assurance will not be impervious from
attack if improperly configured and main-
tained. Managing the threats we face to-
day in cyberspace requires a layered system of security, with
vendors building more secure software, integrators ensuring
that the software is installed correctly, operators maintaining
the system properly, and end users using the products in a safe
and secure manner.

SAFECode Software
Assurance Definition:

Confidence that software,

hardware and services are

free from intentional and

unintentional vulnerabilities

and that the software

functions as intended.

	 4

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							5

The dynamic threat environment creates
challenges for all software-related opera-
tions. Vectors for attacks that could interrupt
or stop critical software functions must be
considered in design and development. The
software assurance risks faced by users to-
day can be categorized in three areas:

Accidental design or imple-1.
mentation errors that lead to
exploitable code vulnerabilities

The changing technological 2.
environment, which exposes new
vulnerabilities and provides adversar-
ies with new tools to exploit them

Malicious insiders3. who seek to
do harm to users or vendors

Accidental Design or
Implementation Errors

The prevalence of hackers, viruses, worms
and other malicious software that attack
systems and networks highlights the first
risk area when programmers inadvertently
create faulty software design or implemen-
tations. Developers address this risk through
developer training and the use of secure
development practices and tools. These
processes are discussed in depth in the next
section of this paper.

The Changing Technological
Environment

Rapid change and innovation are two of
the most enduring characteristics of the IT
industry. But innovation is not unique to
vendors. Criminals can and do innovate. In
the span of only a few years a complex and
lucrative criminal economy capable of sup-
porting specialized skill sets for identifying
and attacking software has developed.

The development of this sophisticated crimi-
nal economy contributes to increasingly tar-
geted and complex attacks. Vendors commit
resources to understand emerging threats
and use state-of-the-art technologies, tools
and techniques to develop software, hard-
ware and services that can resist attack. The
process is one of on-going improvement as
new vulnerabilities are exposed, new threats
are created and new countermeasures de-
veloped and implemented.

New Risks and Countermeasures

	 6

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							7

Malicious Insiders

There is a growing concern that global
software development processes could be
exploited by a rogue programmer or an or-
ganized group of programmers that would
compromise software, hardware or services
during the development process.
Vendors are extremely protec-
tive of their “soft assets” such
as their code base. The complex
development process and the
series of controls used to pro-
tect the development process
provide powerful management,
policy and technical controls that
reduce these risks. There is no
single way to manage or control
a development process. Rather
there are proven best practices
that companies use to manage
their unique development infra-
structure and business models.

SAFECode members implement
processes for vetting employees
and contractors regardless of
their country of residence. How-
ever, far more critical to soft-
ware assurance is establishing
and implementing processes and
controls for checking and verify-
ing software assurance irrespec-
tive of where it was produced.

From a development perspective, these con-
trols are focused more on “how it was made”
than “where they were sitting” during the
coding process.

CASE STUDY
EMC Corporation

A centralized Product Secu-
rity Office coordinates inter-
related programs for strong
security assurance at EMC
Corporation.

Foundation: Product
Security Policy Guides
product development teams
and is a common reference
for product organizations to
benchmark product security
against market expectations
and industry best practices.
Metrics score company-wide
use of the policy.

Knowledge: Security
Training Role-based security
engineering curriculum trains
new and existing engineers
on job-specific security best
practices and how to use
relevant resources.

Process: Security Devel-
opment Lifecycle Over-
lays security on standard
development processes for
achieving a high degree of
compliance with the above
referenced Product Security
Policy.

Architecture: Common
Security Platform A set
of software, standards,
specifications and designs for
common software security
elements such as authentica-
tion, authorization, audit and
accountability, cryptography
and key management using
state-of-the art RSA technol-
ogy. An open interface allows
integration with customers’
security architectures.

Incident Response: Prod-
uct Security Response
Center Defines and enforces
EMC’s vulnerability response
policy to minimize risk of
exposure to customers.

External Validation: Secu-
rity Certification EMC has
received extensive govern-
ment and industry certifica-
tions in design, implementa-
tion and management of its
security processes and solu-
tions – including Common
Criteria or FIPS 140-2.

®
®

	 6

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							7

These risks can all be managed through the
adoption of best practices in software assur-
ance. While a number of international stan-
dards and certification regimes for software
assurance have been issued, their effective-
ness in achieving real-world reduction in vul-
nerabilities is debatable. Companies on their
own have been taking the lead in developing

and implementing practices to produce se-
cure code that are better tuned to real-world
software development processes and result
in higher levels of security. SAFECode’s mis-
sion, in part, is to bring these practices to-
gether to share across the community.

Managing Risk Through Software Assurance Best Practices

Industry Best Practices for
Software Assurance and Security
Software vendors have both a responsibil-
ity and business incentive to ensure product
assurance and security. Customers demand
that software be secure and reliable. Ven-
dors also must produce quality products to
protect and enhance brand names and com-
pany reputations. These pressures motivate
vendors to minimize mistakes in coding,
reduce the occurrences of post-sale vulner-
abilities and related patching, and to protect
sensitive data and the operational integrity
of customer IT systems.

To understand how vendors are earning the
trust of customers, it is useful to examine
best practices employed by the software in-
dustry and how they contribute to enhancing
product assurance and security.

Software development processes vary by
vendor according to their unique product
lines, organizational structures and customer
requirements. Not surprisingly, there is no
single method for driving security and integ-
rity into and across the globally distributed
processes that yield technology products
and services. Yet regardless of the method
used, there is a core set of best practices for
software assurance and security that apply
to diverse development environments.

CASE STUDY
SYMANTEC CORPORATION

Symantec’s product security frame-
work, called Product Security Life
Cycle (PSLC) shapes and governs the
lifespan of products. It has nine steps:
engagement and preparation, educa-
tion and training, security goals and
planning, risk assessment, adoption
of best practices, building automated
routine verifications, security testing,
security readiness review and security
response.

Implementation of the PSLC includes
a series of extensive training classes
about security awareness, secure
development and security testing for
members of the development and qual-
ity assurance teams. This knowledge is
applied with state-of-the-art tools for
effective and secure source code con-
figuration management, product build,
source code analysis, product test and
defect remediation. Engineers routinely
compile and check code modules and
the entire system. Security testing is
performed by quality assurance teams
and a product security team.

Third-party components and open
source software used in this company’s
products are subjected to additional
requirements:

Teams check all code for vulner-•
abilities using standard methodolo-
gies and tools;

Providers are required to allow ac-•
cess to source code and/or that its
vendor scan the code for common
vulnerabilities;

Teams have a documented, con-•
tractual service level agreement
for security patches;

Third-party code is implemented in •
a way that facilitates independent
patching.

These efforts have earned leadership
for this vendor in the certifications
community. Many of its products are
certified by Common Criteria, FIPS
140-2, ICSA Labs and Checkmark;
manufacturing and distribution sites
have ISO 9001 certifications.

	 8

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							9

	 8

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							9

While there are several different develop-

ment methodologies, they all share the fol-

lowing common elements:

Concept The initial phase of every software
development lifecycle is to define what
the software is supposed to do, how us-
ers will interact with the product, and
how it will relate to other products within
the IT infrastructure. This is when prod-
uct development managers assemble the
team to develop the product.

Requirements This phase translates the
conceptual aspect of a product into a set
of measurable, observable and testable
requirements. Developers phrase these
requirements as “the product shall…”
and specify exactly what functions will
be provided, including related degrees
of reliability, availability, maintainability
and interoperability. It is crucial for the
requirements phase to explicitly define
functionality as this will affect subsequent
programming, testing and management
resources expended in the development
process.

Design and Documentation Efficient pro-
gramming requires systematic specifica-
tions of each requirement for a software
application. This phase is more than an

explicit, detailed description of product
functionality. The level of detail in this
phase will adequately enable production
of near-final drafts of documentation to
coincide with final release of the product.

Programming This phase is where pro-
grammers translate the design and
specification into actual code. Effective
coding requires implementers to enforce
consistent coding practices and stan-
dards throughout all aspects of produc-
ing the application. Best practices for
coding ensure that all programmers will
implement similar functions in a similar
manner. Programmers require appropri-
ate training to ensure implementation of
these standards.

Testing, Integration and Internal

Evaluation This function verifies and
validates coding at each stage of the de-
velopment process. It ensures that the
concept is complete, that requirements
are well-specified, measurable, and that
test plans and documentation are com-
prehensive and consistently applied to
all modules, subsystems, and integrated
with the final product. Verification and
validation occurs at each stage of de-
velopment to ensure consistency of the
application. Complex projects require

Framework for Software Development

testing and validation methodologies
that anticipate potentially far-fetched
circumstances. That testing simulates
the kind of duress that an attacker
might apply to break an application.

Release This phase makes the application
available for general use by custom-
ers. Before releasing the application,
a software provider must ensure that
the application meets product criteria,
identify delivery channels, train the
sales organization to match target
buyers with the product’s functional-
ity, and fulfill orders. The applica-
tion’s vendor support team must be
able to respond to customer queries
at production volumes worldwide.

Maintenance, Sustaining Engineer-

ing and Incident Response These
processes support released products.
Applications must be updated with bug
fixes, user interface enhancements, or
other modifications meant to improve
the usability and performance of the
product. Defects fixed in this phase
of the product lifecycle are merged
into the subsequent version of code,
and analysis is conducted to mitigate
the possibility of their recurrence in
future versions or other products.

CASE STUDY
Juniper Networks

Juniper Networks implements a TL
9000 certified process for managing
product development. This process is
audited regularly and protects the in-
tegrity of our products while provid-
ing accountability and predictability.

Projects are managed from con-
cept to end of life (EOL) via a 7
phase process that includes:

Concept and Feasibility•	
Plan and Specifications•	
Design, Implementation and Prototype•	
System Test•	
Beta Test and Pilot Build•	
Production•	
End of Life•	

Concept and Feasibility
Requirements are defined, tracked,
and managed via a database in this
phase of the process. If the require-
ment originated from a customer, then
the customer must approve the require-
ments document to ensure the design
is what the customer really wanted.

Plan and Specifications
The development and delivery sched-
ule is identified in this phase. The en-
gineering team is defined, including
software engineering, a scoping team
leader, and a product manager. A manu-
facturing plan, as well as a diagnos-
tic test plan is defined in this phase.

Continued....

	 10

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							11

CASE STUDY
Juniper Networks
Continued from page 10

Design, Implementation and Prototype
A software manager is assigned at this point
and a scoping team leader manages the team
that documents the functional design speci-
fication and the system test plan. A release
target is identified and a software engineer
is assigned. Code reviews are conducted in
this phase and a member of Juniper’s se-
curity research team is included in the pro-
cess. External auditors may be engaged at
this point as necessary for certification pro-
cesses such as FIPS or Common Criteria.

All source code is derived from a single train
of code, checked in and out of the mainline via
a source code management system (SCM) to
track changes, and any changes made must
be documented and peer reviewed. Juniper
utilizes a company-wide bug tracking sys-
tem that is integrated with our SCM, and all
bugs are assigned a bug tracking number.

System Test
Hardware and software unit testing is per-
formed and the reports are reviewed in this
phase. Products are evaluated by an inter-
nal team made up of system test, software
engineering, the software manager, hard-
ware engineering, and technical publications.
Code reviews and code scanning tools are
employed to minimize mistakes and vulner-
abilities. If penetration testing is appropriate
it is conducted at this point. Beta plans are
defined, and training plans are then cre-
ated. Prototypes are built during this phase.

Beta Test and Pilot Build
After a successful internal system test, the
product moves into beta testing. Any ap-
plicable regulatory testing is performed. Any
software changes are coded, documented,
reviewed, and checked into the main line of
code via the SCM tool. The logistics sparing
plan, the training plan, and all documenta-
tion are completed during this stage.

Production
The product is reviewed again by the team
before being committed to a specific re-
lease of software. After internal system test
and beta testing are successful, the prod-
uct enters regression testing before being
made available for release. Common Criteria
and/or FIPS verification testing is sched-
uled at this point if appropriate. End-of-life
timeframe for the product is predicted.

Product bugs or vulnerabilities during produc-
tion are reported, assigned a number, and
tracked in a bug tracking system. Resulting
code changes are tracked within SCM, the
same as initial code design. The code changes
are again peer reviewed and code scanning
may be employed if appropriate. After verifica-
tion of code, the product is regression tested
and scheduled into a maintenance release.

End of Life
The product end of life is formally an-
nounced and the notice is posted to
our customer service website.

	 10

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							11

In each stage of the software development
lifecycle defined above, there are best prac-
tices for instilling security in a software ap-
plication. Across SAFECode’s membership,
the following security best practices and
controls are well established:

Security Training A prerequisite to
developing secure software is for the
development team to be well-versed
in information security – including
security and privacy issues that may
affect people who use the product.
Some vendors use external trainers
to deliver security training to their
product developers. Other vendors
have established in-house trainers and
online educational content to customize
the training to their specific technolo-
gies and applications. Training topics
include a wide range of issues such as
how to do threat modeling, role-based
security engineering, avoiding unsafe
library function calls and preventing
cross-site scripting errors. Trainers
leverage the available published ma-
terials from industry and academia.

Defining Security Requirements Se-
curity requirements must be defined
during the early stages of product de-
velopment, especially the requirements

definition stage. Security requirements
must go in tandem with product devel-
opment and therefore address architec-
ture and design, product development
and programming best practices, and
requirements for assurance, testing and
serviceability. Security requirements set
at the outset of a product development
cycle may include specific security met-
rics and goals for each major phase of
development. Some teams measure the
effectiveness of design security reviews
or code audits as well as security test-
ing goals. These requirements are set
at the beginning of the project and then
checked during the development cycle.
Quality Assurance teams will set their
security testing goals during this phase.

Secure Design The early design phase
must identify and address potential
threats to the application and ways
to reduce the associated risks to a
negligible level. These objectives may
be accomplished with threat modeling
and mitigation planning, which includes
analyzing the system, and potential
vulnerabilities and attack vectors from
an adversary’s perspective. Some
vendors formalize their attack vec-
tor analysis through threat modeling.
Security experts can be brought in to

	 12

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							13

Software Security Best Practices

help facilitate this process of identify-
ing potential threats and developing
designs that mitigate those threats.

Secure Coding The product develop-
ment team must implement secure
programming practices. This is where
programmers exercise the secure
coding skills they learned during
their training. These require inspec-
tion of an application’s source code
to identify vulnerabilities induced by
coding errors, and implement secure
programming practices that reduce
the frequency and severity of those
errors. Examples of secure coding
practices include source code review
using a combination of manual analysis
and/or automated analysis tools for
identifying potential security defects.

Secure Source Code Handling Security
best practices include careful han-
dling of source code, including tight
change management and tracking
and confidentiality protection of code
such that only authorized persons
are permitted to view or modify its
contents in order to prevent malicious
insiders from introducing vulnerabili-
ties. Systems that process or handle
source code must be protected from
unauthorized access inside or outside
the developing company, and from

intentional or unintentional unauthor-
ized modification. Design and code
reviews are also conducted as a way of
preventing malicious insertion of code.

Security Testing Security testing is
specialized validation that ensures
that the security requirements were
met and the secure design and coding
guidelines were followed. Testing may
include vulnerability analysis, penetra-
tion testing, or use of security testing
techniques such as “fuzzing” or varying
external inputs to identify potential
buffer overflows and other errors. Some
vendors not only do internal testing, but
also submit their products to external
testing or certification. Penetration
testing by independent teams can
uncover vulnerabilities that would not
be detectable using other means.

Security Documentation Software
product documentation must include
explicit treatment of security issues to
help customers understand how to op-
timally configure security controls, and
how configuration options may or may
not expose potential security vulner-
abilities. Examples include creating
a Security Configuration Guide as a
standard part of product documentation.

	 12

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							13

Security Readiness Just before releas-
ing a product, the application developer
must evaluate, document and assess
risks posed by potential security gaps
in the product. This risk manage-
ment best practice enables a product
development organization to evalu-
ate the security posture of a product
and whether it is safe to proceed with
its release to general availability. For
some vendors, this phase is where a
final check is done to ensure that all
of the security requirements set in the
requirements phase have been met.

Security Response Any security vulner-
abilities (exploited or not) reported
against the deployed product are
handled through incident response
and relayed to the product develop-
ment or sustaining teams to mitigate
the vulnerability. Communication with
the discoverers and the customers is
important to ensure that proper ac-
tions are taken to mitigate the risk.
In some cases, this may mean the
vendor will issue a patch to the prod-
uct. Some vendors have developed
technologies that enable customers to
receive security patches automatically
to minimize their exposure to risks.

Integrity Verification Some products
offer customers methods such as signed
code for verifying that the software
they have acquired is indeed from
their trusted vendor. Using public key
technology to sign code is an example
of enabling integrity verification. Some
software companies also build in in-
tegrity checks on an on-going basis to
assure that the components in the solu-
tion are indeed bona-fide components.

Security Research Developers learn
to adapt new technologies to pro-
vide greater customer capability and
value. Along with this investigation
comes research into new threat vec-
tors and mechanisms to mitigate
them. Similarly, as new attack vec-
tors against existing technologies
become known, developers implement
mechanisms to defend against them.

Security Evangelism Leaders in the
area of software assurance promote
the use of best practices by discuss-
ing their practices and findings in
open forums, articles, papers and
books. SAFECode is a central forum
for promoting the use of best prac-
tices to those who need guidance.

	 14

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							15

CASE STUDY
SAP

At SAP, the software development process is
governed by an overall process framework
called “Product Innovation Lifecycle” (PIL). PIL
consists of process standards which describe
the different development phases such as in-
vention, product definition, development, and
testing up to continuous improvement, as well
as product standards which cover cross-prod-
uct aspects like accessibility, total cost of own-
ership, legal requirements, or globalization.

Security is a product standard within PIL. The
standard has evolved from a number of sourc-
es, including SAP development experience,
know-how contributed by renowned security
specialists, market trends, customer feedback,
legal requirements, SAP strategy, and research
findings. It consists of a security planning
framework with best practices for address-
ing common security issues, and a security
report that reflects the status of the imple-
mentations defined in the security plan after
development. In addition, it includes test case
descriptions for a number of requirements.

The security standard represents the core of
secure software delivery at SAP. It is comple-
mented by security training for developers and
testers, in-house security tests, white-box
and black-box security hacking by external
partners on selected top-priority compo-
nents, as well as a global product security

reporting framework that allows it to track
the performance of different product groups
regarding software security. Most SAP ap-
plications are based on a secure framework
(SAP NetWeaver) with standardized security
features, freeing application developers from
security development tasks. Security coaching
is also available for application developers.

The fact that SAP knows every single one
of its customers allows for a highly efficient
security management. Security issues can
be communicated privately to customers via
“Hot News”, eliminating the need for pub-
lic announcements. However, the research
community has been showing a growing
interest in SAP software. To provide first-
hand information and create transparency,
SAP maintains security forums and publishes
newsletters. Customers and researchers
can also contact the SAP Security Response
Team directly via security@sap.com.

In addition, the SAP Security Optimization
Service can be used to check a customer’s
security status, and a staff of highly-qualified
security consultants is available for remote
or on-site support in security questions.

	 14

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							15

	 16

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							17

Related Roles of Integrators and End Users
The best practices described above are aimed squarely at software ven-
dors and their global supply chain of developers. Software assurance,
however, does not end with the vendor. It is a continuous process. The
broader ecosystem of software integrators, operators and end users
who buy and deploy the applications all contribute to the overall assur-
ance of a product or a system.

Integrators:• As applications are scaled to very large environments
and integrated with other products and legacy systems, new vulner-
abilities that did not exist in the stand-alone product may be intro-
duced. Integrators must work in partnership with software vendors
to find and mitigate these vulnerabilities.

Operators:• Operators must ensure that systems remain properly
configured. Automated patching should be enabled to speed the
remediation of vulnerabilities. Operators must also deploy standard
layered defense measures for security, such as firewalls, antivirus,
anti-malware, anti-phishing, intrusion detection and prevention,
virtual private networks, strong authentication and identity man-
agement.

End users:• End users must take the responsibility to report poten-
tial bugs or vulnerabilities and must not introduce software from
untrusted sources into systems. Responsible use of software is an
important ongoing requirement for assurance and security.

	 16

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							17

CASE STUDY
MICROSOFT CORPORATION

Microsoft supplemented its existing soft-
ware development framework with security
and privacy requirements with dual goals
of reducing vulnerabilities and reduc-
ing the severity of any vulnerabilities not
found during the development process.
These process improvements, called the
Security Development Lifecycle (SDL),
include well-defined education and aware-
ness, checkpoints, tools, deliverables and
communication plans that augmented the
existing development process. Security is
incorporated into all phases of Microsoft’s
development lifecycle:

Requirements:• Determine security
certification requirements and list of
processes and tools that must be used
in development process.

Design:• The product team defines
the product’s security architecture and
design guidelines, calculates how much
of the product is exposed to untrusted
users (called the attack surface), con-
ducts threat modeling to uncover “at-
risk” components, and defines criteria
for shipment to minimize vulnerabilities.

Implementation:• The product team
creates the product and threats are
mitigated through updated libraries,
secure coding standards, security test-
ing and use of code analysis tools, and
many defense-in-depth methods must
also be employed.

Verification:• As the product enters
beta testing, the security team con-
ducts additional testing at a deeper
level than during the Implementation
phase. In-house penetration testing
resources are often supplemented by
external design review and penetra-
tion testing contractors. Attack surface
analysis and fuzz-testing is performed
during verification.

Release:• At this point, an assessment
is made of the overall SDL adherence
by looking at security test results, de-
fenses, mitigations, tools use and sta-
tus of bug resolution. Finally, security
response plans are put in place.

Support and Servicing:• A central
security response team handles ex-
ternally reported vulnerabilities. The
central security team works closely
with the security response team and
uses information about newly reported
vulnerabilities to update tools, educa-
tion materials, coding standards, and
potentially the security development
process to minimize vulnerabilities in
future product versions.

Microsoft is active in the certifications com-
munity and regularly pursues FIPS 140
and Common Criteria evaluations of vari-
ous software products and components.
Microsoft addresses feature requirements
for certification during the Requirements
phase of development.

	 18

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							19

SAFECode’s Goals
SAFECode will drive stronger software secu-
rity and integrity across the IT ecosystem
by producing a series of products that build
on this first white paper. Each product will
tangibly advance software security and in-
tegrity over the next five years. The papers
will address five key goals:

A Comprehensive Knowledge Base: De-
velopers are trained and educated in secure
coding practices and certification programs
are well developed. Customers and develop-
ers understand the importance of software as-
surance and realize the return on investment.

Strong Development Processes: Develop-
ers implement processes that are demonstrated
to be effective at improving security and have
a clear roadmap for beginning the process of
building robust software assurance programs.

Consistent Evaluation, Metrics and Certi-
fication: The quality of code can be judged
based on both the inputs (strength of the
development processes and training and
education of developers) and the outputs
(reductions in downtime, vulnerabilities and
new malicious code).

Effective Response Processes: Processes
for identifying and remediating newly dis-
covered vulnerabilities are routinized across
the software ecosystem.

Rigorous R&D: The most important soft-
ware assurance R&D needs are identified and
supported with the appropriate resources.

Conclusion
The global software industry is making great
strides at improving software assurance and
security by applying best practices described
in this white paper. Vendors who have imple-
mented best practices are already seeing a
dramatic improvement in software product as-
surance and security. These are practices that
should be considered, tailored and adopted

by every software developer and vendor. The
result of efforts like these will be a higher
level of confidence for end users in the quality
and safety of software that underpins critical
operations in governments, critical infrastruc-
ture and businesses worldwide.

	 18

	 	 	 	 	 	 	 	 	 	 	 	 	 	 								 							19

Questions for Vendors about Product
Assurance and Security
SAFECode invites your organization to study how vendors use
these best practices as part of the product procurement process.
The following are questions you might pose to determine the
assurance and security of a proposed product procurement or
vendor engagement.

What are your best practices for software assurance?•

What are your best practices for software security?•

Who in your company is responsible for software assurance •
and security and how do they manage the processes?

How are these best practices implemented by contractors •
and other members of your global supply chain?

How does your company assure the quality and security •
of publicly available software modules and libraries used
within your products?

How does your company assure that implementation of •
standards-based protocols for networking functionality is
robust and safe?

How much has use of these best practices decreased de-•
fects and vulnerabilities in your software products?

How does your procedure for patching facilitate non-•
disruptive operation of your software applications?

	 20

(p) 703.812.9199

(f) 703.812.9350

(email) inquiries@safecode.org

www.safecode.org

SAFECode

2101 Wilson Boulevard

Suite 1000

Arlington, VA 22201

About SAFECode
The Software Assurance Forum for Excellence
in Code (SAFECode) is a non-profit organization
exclusively dedicated to increasing trust in infor-
mation and communications technology products
and services through the advancement of proven
software assurance methods. Founded by EMC
Corporation, Juniper Networks, Inc., Microsoft
Corporation, SAP AG and Symantec Corp., SAFE-
Code works to identify and promote best practices
for developing and delivering more secure and re-
liable software, hardware and services. For more
information, please visit www.safecode.org.

© 2008 Software Assurance Forum for Excellence in Code (SAFECode)

